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ABSTRACT
�is work introduces a heuristic-guided branching search algo-
rithm for model-based, mutation-driven test case generation. �e
algorithm is designed towards the e�cient and computationally
tractable exploration of discrete, non-deterministic models with
huge state spaces. Asynchronous parallel processing is a key fea-
ture of the algorithm. �e algorithm is inspired by the successful
path planning algorithm Rapidly exploring Random Trees (RRT).
We adapt RRT in several aspects towards test case generation. Most
notably, we introduce parametrized heuristics for start and succes-
sor state selection, as well as a mechanism to construct test cases
from the data produced during search.

We implemented our algorithm in the existing test case gener-
ation framework MoMuT. We present an extensive evaluation of
our heuristics and parameters based on a diverse set of demanding
models obtained in an industrial context. In total we continuously
utilized 128 CPU cores on three servers for two weeks to gather the
experimental data presented. Using statistical methods we deter-
mine which heuristics are performing well on all models. With our
new algorithm, we are now able to process models consisting of
over 2300 concurrent objects. To our knowledge there is no other
mutation driven test case generation tool that is able to process
models of this magnitude.
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1 INTRODUCTION
�e aim of model-based testing (MBT) is to automatically create test
cases for some system under test (SUT), based on a formal model
of the system. �e model is usually derived from the system’s
requirements, hence MBT is a way of verifying the implemented
system adheres to its original speci�cation. Another use-case for
MBT, for example, is model-based development, where models are
re�ned in an iterative fashion towards a running system. In every
iteration test cases can be created, ensuring the re�nement was
done correctly.

Model-based mutation testing is a fault-based variant of MBT,
where the generated test cases are guaranteed to detect certain
faulty versions of the speci�cation. �e idea here is to prove that
the SUT is free of those faults. Faulty speci�cations are called
mutants, hence the term model-based mutation testing (MBMT).
MBMT, a semantically very rich test case generation technique,
is o�en considered infeasible due to the high overhead related to
computing test sequences that detect discrepancies between the
original speci�cation and mutations of it. We present a test case
generation technique for MBMT that scales to large models from
industry.

Our test-case generation tool MoMuT (www.momut.org) started
as a research prototype [1] and has since become a tool that our
industry partners use. �e performance has improved tremendously
over our initial prototypes. Starting from small toy models, we are
now able to process industry-size models with more than 2300
concurrently running state machines. �is was made possible by
a new exploration algorithm that is able to leverage the power of
today’s highly concurrent CPUs.

https://www.momut.org
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�e quality of a MBMT test-case generator is measured by the
number of mutations it kills. A mutation is killed if there is a path
from the initial state of the model to a state that is a�ected by
the mutation, in the sense that the mutation changes the behavior
of the model at that state. �e mutation based testing community
di�erentiates between two forms of killing, weak and strong [10, 21].
Weak killing seeks for a change in state, whereas strong killing
seeks for a change in observable behavior. Killing a mutant can
be dissected into two phases. First a path from the initial state to
a state where the mutated statement can be triggered needs to be
found. Secondly, killing analysis can be performed. �e focus of
this paper is on the former, but we also discuss techniques and
results for the la�er.

�e original implementation used a straight-forward algorithm
that explored the state space randomly beginning from the initial
state. When parallelized, this approach ignores any opportunity
of coordination between the parallel random explorations. For our
new implementation we adopted a version of Rapidly exploring
Random Trees (RRT), an algorithm that was very successful in task
planning [30]. RRT works well in our se�ing. It basically works by
exploring short paths into the state space and then starting anew,
but not necessarily from the initial state; it can restart from any
previously discovered state. �is allows a massive parallelization
because a large number of these short paths can be explored in
parallel.

In this work we compare several heuristics to choose the starting
state of a new exploration path and in what direction this path
should explore.

In particular we make the following contributions.
• We li� and adapt the rapidly exploring random trees (RRT) al-

gorithm from path planning, where it is highly successful and
widely used, to the discrete veri�cation world.
• We show that through parallelization we increase search perfor-

mance and test case quality.
• We propose and evaluate new search heuristics for discrete state

spaces, including techniques based on distances and rarity of
states.

• Using a range of case studies obtained in an industrial context,
we show that MBMT scales to large models. To our knowledge
no MBMT tool can deal with models of this magnitude.

• We compare the techniques using a thorough statistical analysis
of how many mutants they �nd and show that branching search
performs well.

• We show that an approach combining multiple heuristics inde-
pendently discovers more mutants than each single heuristic on
its own.

�e paper is organized as follows. In Section 2 we introduce the
syntax and semantics of our modeling language. Section 3 provides
an overview over the state space exploration heuristics and Section
4 describes mutation killing. Finally, in Section 5 we show our
experimental data and statistically analyze the results. Section 6
provides a small conclusion and planed future work.

1.1 Related Research
In terms of test case generation technique, our work can be placed
between search-based and guided random testing. Search-based

testing techniques are widely studied. A comprehensive overview
is provided in [34], both for white-box and for black-box testing.
A popular approach within search-based testing is casting test
case generation into an optimization problem [18, 26, 42, 44, 46].
Another popular technique within search-based testing is genetic
programming for gradually improving test suite quality, starting
from a random test suite [16, 32, 45]. Both techniques require exe-
cuting/evaluating test cases multiple times, which is prohibitively
expensive on our models.

Guided random testing is performed in [31] by introducing mul-
tiple techniques to enhance random testing with static and dynamic
analysis information. A classic white-box, automated test case gen-
eration tool is DART [19], which combines random testing with
symbolic based guidance. Furthermore, Randoop [36, 37] uses feed-
back from test executions to guide random automatic generation
of Java unit tests. Whereas the above ideas are applied to code, we
perform test case generation on models. REDIRECT [39] applies
guided random techniques to Simulink/State�ow models.

Adaptive random testing [11, 12] aims to distribute test inputs
uniformly across the input data space. �is is a similar idea to RRT,
which tries to uniformly cover state spaces. However, the inherent
di�erence to our work is that in contrast to simple input values, test
cases for our models are sequences of actions. �erefore, although
we can characterize the state space via distance metrics, this is
much harder for the input space.

�ere are many di�erent test coverage metrics, such as path,
branch or def-use coverage. Unlike control or data-�ow oriented
measures, mutation coverage is a fault based measure. �e adequacy
of this measure is well accepted. Like search-based testing, mutation
based testing is an active area of research [13, 17, 38, 40, 41].

Mutation testing was introduced in the late 70’s by Demilio and
Budd et.al. [10] as a technique for measuring test case adequacy.
Since then, it is an active area of research [13, 17, 38, 40, 41]. A
detailed survey over methods, problems, and developments of the
�eld can be found in [23]. �e strength of mutation coverage was
evaluated with empirical studies [5, 24]. It is based on the competent
programmer hypothesis [10] and the coupling e�ect [35].

Our exploration algorithm is based on rapidly exploring random
trees [30]. Originally proposed for task planning, it was used in
earlier work for the testing of hybrid systems [15].

Model-based testing is a broad �eld. In [43] a taxonomy for
model-based testing is presented and [9] is a detailed book on
model-based testing of reactive systems. Many types of models
have been tested, such as �nite state machines [25], Simulink [39],
labeled transition systems [22], SysML [20]. In contrast, we perform
test case generation on action system models. Due to its expres-
sivity the language can serve for both original and intermediary
models. For example, UML state machine models can automatically
be translated to this language. In [4] a testing approach via sym-
bolic re�nement on action system models is presented. However,
only very small models are processed in contrast to the models
presented and processed in this work.

Our implementation is based on the MoMuT tool [1], which
evolved from a long series of research [2, 3, 27]. We do not know
of any tool but MoMuT that is able to process action systems of the
size of our benchmark examples.
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2 THE MODELING LANGUAGE
Our MBT approach is based on formal models given as action sys-
tems. �e action system modeling formalism was initially proposed
by Back [7] and is based on Dijkstra’s guarded command language
[14]. Action systems provide a good compromise between expres-
siveness and simplicity. Furthermore, it is general enough such that
we can automatically map other modeling formalisms onto it, as it
has been done with UML [27].

We give a brief overview of action systems, a more in-depth
description of the formalism can be found in [27].

Syntax. An action system is of the form

|[V : T ← I; do A od]|
where A is an action,V is a �nite set of variables with types in T ,
initialized with values I.

Types are either boolean, enumeration({v1,v2, . . . ,vn }), in-
teger(n,m) or list(T ,m). An enumeration type is a �nite set of val-
ues v1,v2, . . . ,vn , an integer type represents all integers in [n,m]
and a list type represents all lists of maximum length m, the ele-
ments of which are of type T (lists can contain lists). boolean is
a speci�c enumeration type with the values {true, false} and their
known semantics. All types are �nite.

An action is either a guarded command of the form дuard .
action, skip, abort, an assignment of a variable to an expres-
sion evaluating to an element of its type, or the sequential-, non-
deterministic- or prioritized composition of two actions. �e
дuard of a guarded command is a predicate overV . Each assign-
ment and each guarded command in A is labeled with a unique
label `.

Expressions and predicates are formed using variables and the fol-
lowing operators. Boolean: {∧,∨,→,¬}, Integer: {<, ≤,+,−, ∗, /,
abs,mod}, Lists: {head, tail , f old, select(.), lenдth, concatenate}. Fur-
thermore, we allow ∀ and ∃ quanti�cation, which is a short-hand
notation for a �nite conjunction resp. disjunction, since all our
types are �nite.

Objects. We study models that are wri�en in an object oriented
extension of action systems. However, all objects need to be created
statically during initialization. �erefore, for the purpose of this
work, we can view objects simply as a partition of variables. For
an object, the object value is a Cartesian product of the values of
its variables, together with a unique identi�er of its deriving class.
A more detailed discussion of object orientation in action systems
can be found in [8].

States. A mapping of (a subset of) variables to values of their
respective types is called a (partial) state s . Since all variables must
have an initial value, every action system has a unique initial state
s0. Given a state s and variable v , we denote the value of s in v by
s(v). Given a predicate P and state s , we say that s satis�es P and
write s |= P , if P evaluates to true under assignment s .

Semantics. �e semantics of an action A is de�ned by the suc-
cessor function su(A, l , s) → U . su accepts an action A, a sequence
of labels l , representing a path, that is initially empty, and a state
s . It returns a set of tuples U , each tuple (l ′, s ′) consists of a se-
quence of labels l ′ and a state s ′. �e labels describe the guards

and assignments that lead from s to s ′. We write succA (s) for the
set of successor states of s ({s ′ | ∃l ′. (l ′, s ′) ∈ su(A, nil, s)}). We
write succA (s, l) for the set of successor states of s following label
l ({s ′ | (l , s ′) ∈ su(A, nil, s)}). We use pathA (s) as an abbreviation
for su(A, nil, s). For a tuple π ∈ pathA (s) we use the notation π .l
to refer to its path- and π .s to refer to its state component.

We call a state sn reachable if there exists a �nite sequence of
states s0, s1, . . . , sn starting from the initial state, such that∀i, si+1 ∈
succA (si ). We call an action A reachable, if there exists a reachable
state s , such that there is a π ∈ pathA (s) and A ∈ π .l .

Table 1: Successor State Semantics

Action (A) Notation su(A, l, s)
skip skip {(l , s)}
abort abort ∅
Assignment ` : v ← e {(l ::`, s[v := e])}
Guarded command ` : д .A1 (s |= д) ? su(A1, l ::`, s) : ∅
Sequential Comp. A1;A2

⋃
(l ′,s ′)∈su(A1,l,s)(su(A2, l ′, s ′))

Non-det Comp. A1[]A2 su(A1, l , s) ∪ su(A2, l , s)
Prioritized Comp. A1//A2 su(A1, l , s) , ∅ ? su(A1, l , s)

: su(A2, l , s)

Mutation. In this work, we study the di�erences between mu-
tated action systems and their original versions. A mutated action
system is a duplicate of a given action system, with the exception
of small syntactically correct variations, i.e. mutations. We allow
expressions used in assignments and guarded commands to be mu-
tated and assign a unique integer mutation id to every mutation
introduced. For an action ` : A that is an assignment or a guarded
command, we denote bym(A) =m(`) the set of mutation ids applied
to action A. We call a mutation reachable, if its action is reachable.
For action A and mutation m ∈ m(A) the mutated version of A
is denoted by Am . Table 2 lists the types of mutation operators
we consider and gives examples for a selected subset of operators.
�e chosen mutation operators are those standard operators from
the literature [23] that are applicable to our modeling formalism.
A mutated action system Am is derived from the original action
systemA by inserting exactly one mutationm. �e general goal of
mutation testing is not only to reach mutants, but also to kill them.
Our approach to killing of mutants will be discussed in Section 4.

3 STATE SPACE EXPLORATION
In this section, we describe our main algorithm to perform state
space exploration on action systems. �roughout the section, we
assume an action system A with variablesV and initial state s0 is
�xed.

�e goal of the search is to �nd mutations. Given a mutation
m that is a�ached to action A with label `, we say that we found
mutationm, if we found a reachable state s , such that there exists
( , l) ∈ pathA (s) such that ` ∈ l . �e overall goal of mutation
testing is to construct test cases that kill mutants. Finding mutants
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Table 2: Mutation Operators and Examples

Mutation Examples

Replace Unary Operator ∀x : uint4 7→ ∃x : uint4
−x > y 7→ abs(x) > y

Replace Binary Operator x + y 7→ x ∗ y
x = 5 7→ x < 5
a ∧ b 7→ a ∨ b

Disable Guard x > 5 .A 7→ f alse .A
Invert Sub-Predicate x = y ∧ a 7→ ¬(x = y) ∧ a
Replace Integer Literal x ← 5 7→ x ← 6

in Assignments 1 x ← 5 7→ x ← 0
Replace Boolean Literal a ← true 7→ a ← f alse

is the �rst step towards achieving this goal. During search we si-
multaneously perform mutant kill analysis, which will be described
in more detail in Section 4.

�e search is organized in exploration steps. A single explo-
ration step starts from one state and computes all successor traces
and states. To this end, the underlying do-od loop of the model is
executed, guards are evaluated, and e�ects are calculated. Across
the whole test case generation approach this is by far the computa-
tionally most expensive part.

�e main source of inspiration for our search procedure was the
rapidly exploring random trees (RRT) [30] path planning algorithm.
RRT splits the search into small sub-searches, which we call tasks
and denote them by τ in the algorithm. Each task is given a random
goal-state: a state that should be reached by the exploration. Fur-
thermore, each task is started from the previously discovered state
closest to the goal, w.r.t. some distance metric (see Section 3.2), and
proceeds to explore states leading closer to its goal. In order not to
get stuck and su�er from bad random goal choices, the time each
task runs is kept short. By remembering path pre�xes of visited
states, we can construct paths from the initial state to every state
we discover during the search, which are then transformed into test
cases (see Section 4). �e main property of RRT for our problem is
that it is able to reach di�erent areas of large state spaces quickly
[28]. We assume that in di�erent areas of the state space di�erent
actions are enabled and as a consequence di�erent mutations can
be found.

We found that distance based search does not always provide
satisfactory results on our discrete models. �erefore, we abstracted
the successor state computation and experimented with multiple
di�erent versions of it, using the same overall search procedure.

Dissecting the search into many small searches is well suited for
parallel processing. In fact our algorithm is designed and imple-
mented in an asynchronously parallel fashion. It is asynchronous
in the sense that one task does not have to wait until another task
is �nished, but can be started as soon as resources permit it.

3.1 Abstract Search Algorithm
Algorithm 1 shows the pseudo code of our abstract search procedure.
�e algorithm is abstract in the sense that it needs to be instantiated
by the following parameters: MAX STEPS is the total number of
1We replace integers by min, max, value +1, value-1 and by 0 if it is in the domain

exploration steps to be performed, MAX CHOICES is the number of
exploration steps performed by a single search task, CREATE TASK
is the method to create new tasks, and SELECT SUCCESSOR is the
method to select successor states. Every task τ is represented as a
tuple consisting of its current state τ .state , its goal states τ .дoal ,
which is used by some successor state heuristics, and its number of
steps it already performed τ .steps .

�e algorithm executes two main blocks of instructions in a loop
until the maximum number of steps has been performed.

�e �rst block (lines 2–5) starts new tasks. We want to start
a new task initially (c = 0) and whenever the number of steps
between the current and the last time a task was created exceeds
the maximal number of steps for each task divided by 4. We delay
the creation of new tasks as opposed to eagerly starting as many
tasks as possible, because start states of tasks are chosen among
the previously discovered states. We found a length divided by 4 to
be a good compromise between parallelism and delayed starting
to bene�t from prior exploration. When creating a new task, we
heuristically choose a start and a goal state.

�e second block (lines 6–16) performs the essential part of the
search, computing successors and making the decision where to go
next. Please ignore line 10 for the moment, we will discuss it later.
We implicitly denote the successor state and path computation by
referring to the sets succA and pathA . All successor states are
added to the set of visited states S . We add every mutation that is
found on one of the successor paths to the set of found mutations.
Finally, we increase the task speci�c- and global step count by one.

Data: Visited States S ← {s0}
Data: Running tasks T ← ∅
Data: Found mutations M ← ∅
Data: Step count c ← 0
Data: Task creation count l ← 0

1 while c < MAX STEPS do
2 if c − l ≥ MAX CHOICES

4 ∨ c = 0 then
3 l ← c

4 τ ← CREATE TASK
5 T ← T ∪ {τ }
6 for τ ∈ T do in parallel
7 if τ .steps < MAX CHOICES then
8 for π ∈ pathA (τ .state) do
9 M ← M ∪⋃`∈π .l m(`)

10 CheckAndKillMutants(τ .state,π )
11 S ← S ∪ succA (τ .state)
12 s ← SELECT SUCCESSOR(succA (τ .state))
13 τ ← 〈s,τ .goal,τ .steps + 1〉
14 c ← c + 1
15 else
16 T ← T \ {τ }

Algorithm 1: Abstract State Space Algorithm

3.2 Distance Metrics
Many of our heuristics use distance metrics to guide the search. �e
notion of distance is also a key concept of rapidly exploring random
trees. RRTs are usually applied to path planning in the plane, where
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the notion of distance is naturally given by the Euclidean distance.
We needed to �nd a distance metric that �ts our se�ing, which
has rich types and many dimensions, due to the high number of
variables. We assume that we always compute distances over values
that are of equal type, e.g. it is guaranteed that we never apply a
distance function to an integer and an enumerate value.

Distance on values. Given two boolean or enumeration values
a,b, we de�ne their distance d(a,b) := 0 if a is equal to b and
d(a,b) := 1 otherwise. Given two bounded integer values a,b with
boundsmin,max , we de�ne their distance to bed(a,b) = |a−b |

max−min .
By re-scaling integer distance by their range, distances range from
0 to 1 and they become comparable to distances on boolean and
enumeration values. Given two list values a andb, we compute their
distance on their recursively �a�ened versions. On the �a�ened
lists, we take care to compare only related elements, inserting
dummy elements, having distance 1 to all other elements, when
lengths do not match.

Distance on states. Assuming we have de�ned a distance metric
d(., .) over individual values, we li� it to states by de�ning

d(s1, s2) :=
√ ∑
v ∈V

d(s1(v), s2(v))2

For convenience, in the following sections, we use a default state
⊥ and de�ne d(s,⊥) = d(⊥, s) = ∞ for every state s .

3.3 Create Task Heuristics
We are now ready to describe the heuristics to create new tasks. We
also refer to heuristics as strategies. �e main job of task creation
is to pick a state to start the task from. We are free to choose any
state among the previously discovered states S and assume in this
section, that this set is given.

We work under the assumption that in regions of the state space
that have not been explored yet, we are likely to �nd new mutants.
�e di�culty lies in concretizing the concepts “regions of the state
space” and “not explored”. We propose heuristics that were designed
to approximate these concepts and compare against heuristics that
neglect our assumption.

Table 3 provides an overview of the heuristics described in more
detail below. We assume a function rand(.) that returns a random
element of its input set.
Init. �e Init heuristic simply always chooses the initial state as
its start. It has the bene�t over other heuristics, that due to com-
pletely restarting at every task, it is more likely to make di�erent
choices on early branches in the action system. Its downside is that
it is likely to repeat work that has been previously performed by
other tasks.
RandSt. �e RandSt heuristic simply chooses one random state
in S .
RGoal. �e RGoal heuristic resembles classic RRT search. It �rst
draws a random goal state and then �nds the closest state in S .
When drawing a random goal, for each variable, we uniformly
pick a random value of its type range. For list variables, we �rst
randomly choose a length and then recursively create random
values according to their respective types.

Table 3: Heuristics for CREATE TASK

Name Description

Init return 〈s0,⊥, 0〉
RandSt return 〈rand(S),⊥, 0〉
RGoal дoal ← rand(V)

return 〈arg mins ∈S (d(s,дoal)),дoal , 0〉
PGoal(U/R) τ ′ ← randomly pick fromU(s)/R(s)

дoal ← perturb τ ′.start
return 〈τ ′.start, goal, 0〉

RoRoSt(L) return task created according to L[i]
i ← (i + 1) mod len(L)

PGoal. �e PGoal heuristic turns around the selection process
used by RRT by �rst picking a state and producing the goal from
that state. �e state to start from is picked, from the set of unique
states U(S) or rare value states R(S). �ese sets are de�ned as
follows: U(S) = {s ∈ S | s was inserted into S at most once},
R(S) = {s ∈ S | ∃v ∈ V such that |{t ∈ S | s(v) = t(v)}| < |S |10 }.
�e intuition is that these states lie in regions of the state space
that have been sparsely explored. �en a goal state is created by
perturbing a fraction of the variable values.

�e idea of this heuristic is that random goals might too o�en
point towards unreachable parts of the state space and we might
get stuck trying to reach such states. Perturbed goals are close to
states that we have already visited, therefore, they are more likely
to be reachable. However, the global property of expanding the
discovered state space to a random direction might be lost due to
this selection strategy.
RoRoSt. �e RoRoSt heuristic is a meta-heuristic that creates
tasks according to multiple create task heuristics L in a round
robin fashion. For the experiments presented in this paper, RoRoSt
chooses among all heuristics but PGoal. �e idea of round robin is
to combine the strengths of the heuristics L. If one task gets stuck
due to a bad start decision, the next one is not likely to get stuck in
the same way.

3.4 Select Successor Heuristics
In the following, we describe the heuristics to select successor states
during the search. Table 4 shows the di�erent heuristics and gives
a short overview.

We assume a preliminary selection function select(.)which picks
one element out of a set of tuples of states and evaluations. As in-
stantiations for this function, we experimented with greedy, simply
taking the best evaluation, weighted, picking probabilistically ac-
cording to the distribution given by the evaluations, and bucket
�rst grouping states into buckets of equal evaluation, secondly pick-
ing a bucket probabilistically according to the distribution given
by the evaluations and �nally picking a state randomly within the
bucket.
RandNe. �e Rand heuristic simply chooses randomly among all
possible successor states.
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Table 4: Heuristics for SELECT SUCCESSOR

Name Description

RandNe return rand(succA (s))
Dist Λ = {(t , λ)|t ∈ succA (s), λ = d(t ,τ .дoal)}

return select(Λ)
Part Λ = {(t , λ)|t ∈ succA (s), λ = α(t)}

return select(Λ)
BFS Every 10’th choice: schedule all s ∈ succA (s)

Otherwise: schedule according to Dist

RoRoNe(L) return state selected according to L[i]
i ← (i + 1) mod len(L)

Dist. �e Dist heuristic assigns the distance to goal state as state
evaluation and picks a successor state via the select(.) function
described above. �is heuristic resembles classic RRT search
Part. �e Part heuristic assigns the new object states function
α(.) as state evaluation and picks a successor state via the select(.)
function described above. α(.) returns the number of object values,
c.f. Section 2, that occur in s , but not in S .

�e idea of this heuristic is to have a �ne grained characterization
of new information in states. For large models, the search algorithm
constantly �nds new states, since the number of combination of
variable valuations is high. It is reasonable to assume that objects
of the same type typically have a symmetric role, in the sense that
it does not ma�er which particular instance is in a state that might
trigger new behavior. �e Part heuristic exactly tries to capture
and quantify the novelty of information a state supplies.
BFS. �e BFS heuristic works a bit di�erent than the other heuris-
tics. It selects successors according to the Dist heuristic, except
that in every 10th iteration all successor states are explored. One
successor is picked to be explored by the current task, and in all
other states new tasks are started. We expect that BFS will explore
several (very di�erent) directions towards a goal. We only perform
the complete successor search every 10th iteration in order not to
�ood our search with too many tasks and intermediate states.
RoRoNe. �e RoRoNe heuristic is a meta heuristic, assigning to
every task a strategy in a round robin fashion from a list of other
select successor heuristics. �e strategy is �xed for one task for its
whole lifetime. Similarly to RoRoSt for task creation, we want to
bene�t from the advantages of all other heuristics and avoid to get
stuck during the search.

4 MUTATION KILLING & TEST CASE
GENERATION

Although it is not the main focus of this work, we perform kill
analysis in addition to reachability analysis. Ultimately, the goal
of mutation testing is to create test cases that guard against errors,
modeled by (killed) mutations. In this section, we describe how
we achieve this goal by creating test cases and perform mutation
killing during state space exploration.

Mutation Killing. In the realm of mutation analysis for test case
generation, there exist two ways to kill a mutant. A mutant is

weakly killed [21], if it produces a di�erent state than its original
version. In our se�ing, this means that for an action A, mutation
m ∈ m(A) and state s we have that su(Am , nil, s) * su(A, nil, s).
A mutant is strongly killed [10], if it produces di�erent output
than its original version. Actions can be annotated with a special
label that marks them as being observable, which corresponds to
program output. We have implemented a prototypical mode that
performs strong kill analysis with the help of these observable
actions. However, due to the high costs associated with strong
killing, we consider only the weak killing model in this work. �is
is a common approach to mutation testing [23].

Mutation Killing and Test Case Generation During Search. Func-
tion CheckAndKillMutants, depicted in Algorithm 2, performs both
mutation killing and test case generation. �e function is called
in line 10 of Algorithm 1 for every successor transition s

π .l−−−→ π .s
discovered during the search. Algorithm 2 records every edge in
graph E that is later used to �nd a path from the initial state to the
mutant (line 2).

�en we check for every mutation m whether the set of suc-
cessors in the mutated system following labels π .l is a subset of
the successors in the original system following labels π .l . We also
consider the mutant killed if it can not execute labels π .l in state
s . If this is not the case, we found a killing edge and we generate
a test case by �nding the shortest path in E to s and adding the
last transition to π .s (line 6). In K we collect the mutations already
killed to prevent double killing, which would lead to additional test
cases with arguable value.

Finally all test cases are collected in Σ. �e resulting test cases are
sequences of labels 〈l1, . . . , ln〉 such that s0

l1−→ s1 · · ·
ln−−→ sn in the

original system and s0
l1−→ s1 · · ·

ln−−→ s ′n in the mutated system with
sn , s ′n . Test cases can be removed from Σ if they are a pre�x of
another test case, since the subsuming test is strictly more powerful
than its pre�x in terms of mutation killing.

Data: Killed mutations K ← ∅
Data: Test Case Graph Edges E ← ∅
Data: Test Cases Σ← ∅

1 Function CheckAndKillMutants(s,π )
2 E ← E ∪ {s π .l−−−→ π .s}
3 form ∈ ⋃A∈π .l m(A)\K do
4 if

succAm (s,π .l) * succA (s,π .l) ∨ succAm (s,π .l) = ∅
then

5 K ← K ∪ {m}

6 Σ← Σ ∪ {shortestPath(E, s0, s)
π .l−−−→ π .s}

Algorithm 2: �e CheckAndKillMutants function used in Alg. 1

5 EXPERIMENTS
In this section, we present the benchmark models and the experi-
mental evaluation of the presented methods on these models. Fur-
thermore, we discuss implementation caveats and engineering tech-
niques we use to be able to process the largest of our models.
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Table 5: Properties of the Test Models

Model Traces Obj GC Vars SS LoC

AlarmSystem 55·106 3 362 42 0.3 967
Debounce 52·100 3 35 29 0.1 655
De�brillator 3·103 4 1215 67 0.4 2949
Measurement 41·103 3 877 55 0.5 1834
Loader 108·109 4 748 98 0.8 2009
MMS 2·103 125 4798 1490 22.3 8281
LBT 51·103 2373 26385 27959 184.9 33289

5.1 Models
Table 5 provides a comparison of some of the key properties of the
test models considered in this paper. �e models were collected
from several industrial use cases. �e use cases for AlarmSystem,
Measurement and Loader are described in [1–3]. All models were
originally wri�en in UML and automatically translated to action
systems. In this work we consider only the resulting action systems.
�erefore all properties of the models described here relate to the
action system representation.

�e Traces column shows the number of di�erent execution
traces that are possible, considering the non-deterministically com-
posed actions of the do-od blocks. Notice that this is a theoretical
value as not all traces may be feasible due to guarded commands
not being enabled. �e Obj column shows the number of objects in
the action system. Each object has its own independent do-od loop
and can act concurrently to all other objects. Although not every
object is always allowed to make a transition in every iteration, this
property gives an indicator the amount of concurrent actors in the
respective model. �e GC column shows the number of guarded
commands in the do-od block. �e Vars column shows the total
number of variables of the action system. �e SS column shows the
size of a single state given in kilobytes, i.e. the maximally required
memory to represent one state of the action system. �is value is
calculated assuming the maximum length of lists and therefore rep-
resents the upper bound of the state size (except for LBT where we
chose to report the lower bound as the maximum would have been
too much of an overestimation). Unfortunately, we can not report
reachable state space size. We tested the reachable state space for
the medium sized MMS and found 2.5 million states before running
out of memory. Finally, the LoC column shows the number of lines
of code in the ooas model.
AlarmSystem. AlarmSystem is a simple model of a car alarm
system.
Debounce – Signal Debouncing Algorithm. Debounce mod-
els a debouncing algorithm used in the domain of safety critical
industrial control.
De�brillator – Automated External De�brillator. De�brilla-
tor models the diagnostic logic of an automated external de�brilla-
tor device.
Measurement –Measurement Device. Measurement is a model
of a remote control protocol of an exhaust measurement device.
Loader – Loader Bucket Implement. Loader models the control
loop (including user feedback and error handling) of a bucket loader
implement controller. �e controller receives joystick de�ection

values as inputs and computes output values that will drive valves
controlling the movements of the bucket.
MMS, LBT – Railway Interlocking Systems. MMS and LBT
are instantiations of a railway interlocking system. �e original
UML models consist of two parts each: one shared general model
that de�nes all classes and data structures, and one that instanti-
ates the objects needed for the station. While MMS represents a
minimal station that allows trains to pass one another, LBT is a
model of a mid sized, real life railway station. Both models are
highly non-deterministic due to networks of 2373 (LBT), and 125
(MMS) concurrently running objects. �e objects are used to model
both, physical, as well as logical entities, such as train routes. Both
models make extensive use of lists and forall/exists quanti�ers. For
example, LBT includes more than 9000 lists in the state, has more
than 50 exists quanti�ers and over 100 forall quanti�ers that have
a maximum nesting depth of �ve. In addition these models have
an initialization phase where all elements concurrently move into
their initial position and communicate it to the outside world. In
total the initialization sequence for LBT consists of 264 steps. �is
means that starting test case generation from the initial state is a
bad choice for these models, which is con�rmed by our data. �e
di�erence in number of mutants is explained by the di�erent station
layouts using di�erent parts of the modeled functionality.

All these models have been built by researchers in coopera-
tion with industry partners for their real use cases. For example
Debounce is used in production by an industrial control systems
provider to generate test cases.

�e selected models provide di�erent challenges for our test
case generator. In terms of complexity, LBT is the biggest exam-
ple because of its high number of concurrent objects, with MMS
following with some distance. Debounce is the simplest, but still
uses an integer to model discrete time. �e la�er is used in all
models except the railway interlocking ones. Loader’s challenging
complexity stems from both its use of many concurrent timers and
the large allowed value ranges for its input parameters, increasing
the state space.

5.2 Implementation
�e algorithm and heuristics presented in this work are imple-
mented in the back-end of the MoMuT tool. In order to have a hard
grip on resource consumption, the back-end of the tool is wri�en
in C++. Furthermore, the original- and mutated action systems are
just-in-time compiled [6, 29] to machine code, which allows us to
execute transitions fast and leverage compiler optimizations.

As mentioned in earlier sections, we implemented the search
procedure in an asynchronous parallel way. �ere is a central sched-
uler, which accumulates and distributes data and performs the SE-
LECT START computations. Additionally, there is a set of workers
that perform the labor intensive job of SELECT SUCCESSOR com-
putations and kill-checking. Workers store gathered data in bu�ers,
that are repeatedly harvested by the central scheduler. Workers
request new tasks from the scheduler actively. �erefore, our par-
allel computation scheme has two synchronization points between
scheduler and workers: the harvesting of bu�ers and obtaining
new tasks. In between these synchronization points, all threads
run asynchronously.
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5.3 Experimental Setup
In the following, we present the experimental evaluation of the pre-
sented techniques on our benchmark models, compare our heuris-
tics to each other, and evaluate which ones work best, overall and
for speci�c scenarios.

We performed our experiments on 3 servers running Debian
Jessie. �ey have between 24 and 64 logical cores and between 48
and 192GB of RAM. In total we continuously utilized 128 cores for
over two weeks to gather the data that went into this paper. We
conducted 1963 experiments using di�erent combinations of pa-
rameters and heuristics. �e scripts to reproduce these experiments
are available on request.

5.4 Choices of Parameter Values
We ran the algorithm with a number of di�erent values for the
following parameters and present our summary here.

MAX STEPS. We evaluated di�erent values for MAX STEPS and
found that runs performed with values below 150 are too fragile
for random decisions and produced high variance in the results.
For values above 2000 we found that there is a saturation and no
improvements were made. �erefore, we se�led on values 150, 500,
and 2000 for the experiments presented in the following section.

MAX CHOICES. We found that values smaller than 50 again
produced results with high variance. Furthermore, for the Init
strategy, such small values do not make sense.

We evaluate the parameter value 50 across all MAX STEPS val-
ues, and higher values 150 and 250 for runs with higher MAX STEPS
values.

select(.) In preliminary experiments, bucket selection was clearly
superior to greedy and weighted selection, which were therefore
dropped in the �nal experiment set.

Random Seed. Although not formally speci�ed in our algorithm,
one parameter of our procedure is the random seed used for random
number generation. We ran every combination of strategies with
5 di�erent random seeds and found that there is no signi�cant
di�erence between the results.

5.5 Statistical Evaluation Method
We use a one-sided Mann-Whitney U test [33] in order to evaluate
performance of heuristics w.r.t. mutations found. �e one-sided
Mann-Whitney U test takes two sets of measurements A,B. �e
null hypothesis is that if we have two samples a and b drawn from
A and B respectively, the outcomes a > b and a < b have the
same probability. �e alternative hypothesis is that a > b has
a higher probability than a < b. We used the Mann-Whitney U
test as opposed to the stronger t-test, because it seemed that our
measurements are not normally distributed, which is an assumption
of the t-test. Further assumptions for these tests are independence of
samples, which is true, because runs are performed independently,
and measurements on an ordinal scale, which is true, because our
measurement is an integer number.

We use this statistical test to determine which heuristics signi�-
cantly (we use the standardp = 0.05) outperform others. To this end,
for every model, we iteratively �lter our experimental data set twice,

once for the CREATE TASK and once for the SELECT SUCCESSOR
heuristics. Starting with the whole set of experiments E, in ev-
ery round of this iterative process, for each remaining heuristic
C , we split the remaining set of experiments into two halves. EC
are the experiments that were performed using C and E¬C are the
experiments that were performed using any other heuristic. We
use the Mann-Whitney U test to compare EC to E¬C , using number
of found mutations as our indicator. We �lter out the heuristic that
performed most signi�cantly worse than its counter-set, if any, by
taking E := E¬C and repeat the process until no heuristic can be
shown to signi�cantly under-perform.

5.6 Statistical Evaluation Results
In Table 6 we report the results of the statistical evaluation method
described above. Columns Out show for how many models the
respective heuristic was thrown out during data-set �ltering, i.e.
was shown to signi�cantly under-perform. Lower values are be�er
here. Columns Best shows for how many models the respective
heuristic was the last remaining heuristic in the �ltered data set,
when the �ltering is performed beyond signi�cance level. Higher
values are be�er here.

Table 6: Parameter Performance Across Models

CREATE TASK SELECT SUCCESSOR

Out Best Out Best
RGoal 0 2 RandNe 1 3
RandSt 1 3 Dist 1 2
PGoal(R) 1 1 BFS 1 2
PGoal(U) 1 0 RoRoNe 3 0
Init 2 1 Part 5 0
RoRoSt 2 0

RGoal and RandSt are the most reasonable choices in the CRE-
ATE TASK category with PGoal performing reasonably. On the
other hand Init and RoRoSt fall a bit short. �is indicates that
branching search, i.e. starting tasks from intermediate states rather
than the initial one indeed performs well overall. �e fact that
RGoal could not beat random RandSt more decisively indicates
that the random goals are not of high quality. Two possible expla-
nations are that the generated goals are o�en in unreachable parts
of the state space, or that the search space has a non uniform topol-
ogy, i.e. even though the values permit expansion into multiple
directions, the enabled actions o�en do not allow to lead the search
towards these directions.

Within the SELECT SUCCESSOR category, RandNe, Dist and
BFS perform best, although every heuristic was shown to be signi�-
cantly under-performing on at least one model. �e most signi�cant
result is that Part clearly under-performs and that the intuition
of capturing new information of states via the Part heuristic was
not fruitful. Unfortunately, Dist was not able to beat random suc-
cessor choice. Two possible explanations are again the low quality
of random goals, pointing in directions that are not reachable, or
that the distance metric used was not able to accurately capture
similarity of states in our search spaces.
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Unique Finds. Even though many strategies �nd a similar number
of mutants, the total number discovered by all strategies combined
is higher than the number of mutants found by a single strategy.
�is is even true if we combine the mutants found over several
runs of the strategy with di�erent random seeds. We calculated
the number of mutants uniquely found per SELECT SUCCESSOR
strategy, i.e. no other strategy found them. For this evaluation,
we excluded the heuristics RoRoNe and BFS that are based on other
strategies. We present these numbers in Table 7. For missing models
none of the strategies found unique mutants.

Table 7: Unique Kills Per Model

Model RandNe Dist Part

De�brillator 126 43 0
Measurement 0 1 0
Loader 159 25 0
MMS 0 54 0
LBT 0 23 0

Similar to the results of the statistical evaluation RandNe and
Dist perform well for unique �nds. �e total number of unique
mutants found for RandNe (285) is higher than the total number of
mutants found for Dist (146). However, Dist is able to �nd unique
mutants across more models. In three models it is the only strategy
to �nd unique mutants. �erefore, the use of di�erent strategies
is justi�ed as they �nd more mutants combined than any single
strategy. It appears round robin is not su�cient to combine several
strategies, it is more bene�cial to conduct an entire run with a
single strategy and have multiple runs. One reason for RoRoNe not
utilizing this combination idea e�ectively is that di�erent tasks in
the same search are not independent of each other. If the search
is driven towards a region of the state space that does not yield
many new mutants, di�erent search strategies might not be able
to correct and steer the search in be�er areas. In contrast, if the
searches were performed independently, one search might discover
a bad region, which does not a�ect any of the other searches.

5.7 Branching versus Non-branching
�e results presented above indicate that the branching search is
e�ective. We wanted to evaluate this aspect more carefully by
comparing our algorithm operated running in a branching versus
a non-branching fashion. Non-branching search means that the
whole search is performed in one single task, whereas in branching
search many tasks are created and terminated during search.

In Table 8 we report the time per step for branching and non-
branching search. �is quotient is calculated by dividing the wall-
clock time the implementation ran by the total number of steps
performed in the experiment. We chose to present this quotient, to
make experiments with di�erent parameters for MAX STEPS com-
parable. �e results show a signi�cant increase in speed introduced
by the shi� to branching search.

Apart from performance we also see an improved quality of
the test cases. A test case �xes the choices for non-deterministic
compositions, such that one or more states are reached that weakly
kill one or more mutants. An important measure of test case quality

Table 8: Time Per Search Step Non-Branching vs Branching

Model Non-Branching Branching Decrease2

(ms/step) (ms/step) (%)

AlarmSystem 41.4 4 90.4
Debounce 40.0 5.2 87.0
De�brillator 71.3 10.0 86
Measurement 55.2 9.9 82.1
Loader 10999.4 1660.1 84.9
MMS 465.3 63.9 86.3
LBT 18648.0 6551.5 64.9

is length. �e length of a test case is measured in steps where
every step corresponds to one iteration of the do-od loop. �e
shorter a test case the be�er, as shorter test cases run faster, can
be executed in parallel, and are easier to debug when they fail. In
Table 9 we report average test case length for branching and non-
branching runs. �e reason for branching search runs producing
signi�cantly shorter test-cases is that they restart from intermediate
positions repeatedly. Non-branching search produces one long
chain of actions exploring the state space and all test share a pre�x
of that chain.

Table 9: Avg Test Case Length Non-Branching vs Branching

Model Non-Branching Branching Decrease2

(# test steps) (# test steps) (%)

AlarmSystem 9.9 8.4 15.2
Debounce 10 7.8 22.5
De�brillator 47.5 19 60.1
Measurement 81 26 67.9
Loader 47.2 23.2 50.8
MMS 265.2 57.5 78.3
LBT 220.5 152.3 30.9

5.8 Mutations Found & Killed
�e goal of MBMT test case generation is to �nd and kill mu-
tants. In the previous sections we presented the performance of
our heuristics for �nding mutants. Although di�erent heuristics
�nd di�erent mutants, heuristics have no impact on the killing of
mutants: we follow the same approach across all search strategies.
Across search strategies, the ratio of killed per found mutants did
not vary. �erefore, in Table 10 we present the killing ratios for all
models. Furthermore, the table shows the total number of mutants
seeded per model and the average number of mutants found across
all heuristics.

5.9 �reats to validity
We took great care to ensure that the conclusions we draw are
based on solid data collection and statistical evaluation.

2Decrease is calculated as Non-Branching−Branching
Non-Branching
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Table 10: Mutants and Verdicts per Model

Model Total Found Killed
(% to total) (% to found)

AlarmSystem 389 388.4 (100%) 198 (51%)
Debounce 569 531.3 (93%) 166.6 (31%)
De�brillator 1653 749.9 (45%) 447.3 (60%)
Measurement 1653 1144.4 (76%) 395.7 (35%)
Loader 1772 1181.6 (67%) 597.4 (51%)
MMS 1826 1195.6 (65%) 874.5 (73%)
LBT 1897 1153.3 (61%) 625.4 (54%)

Our implementation has two sources of randomness: Random
choices by the heuristics and randomness in scheduling of threads.
�e la�er can cause di�erent results, because some heuristics de-
pend on the states already explored. To ensure our results are
comparable we used �xed random seeds. For each combination
we tried at least 5 random seeds. However, we do not evaluate the
individual combinations, but aggregate them to evaluate a single
aspect (only successor heuristics or only create task heuristics).
�is does not just include the di�erent combinations of heuristics,
but also the combinations of parameters. �is yields su�cient data
to draw conclusions.

To compare the mutation �nding performance of heuristics we
go beyond simple averaging of results. �e performance is o�en
very similar at �rst glance. We therefore employ statistics to test
whether di�erent heuristics are indeed performing signi�cantly
di�erent.

Another aspect is that we did not run all combinations of heuris-
tics. However, this does not pose a problem to our evaluation
because in practice one would not combine these heuristics. For
example it makes li�le sense to start from a random state and then
evaluate the successor states by distance.

6 CONCLUSION
In this work we present an algorithmic framework for heuristic-
guided branching search and an extensive evaluation of heuristics in
the context of action systems. While we found that a few heuristics
do not perform well in practice, the remainder are similar in number
of mutants found. We demonstrated that branching, parallel search
is superior to a sequential search in terms of performance and test
case quality. An interesting result is that no single heuristic is able
to �nd all the mutants that are found by the others, even when
repeatedly running with di�erent parameters and random seeds.
�is means that the best result is achieved by running multiple
heuristics independently and combining their results.

In future work, we would like to improve random state creation
using static and dynamic analysis. �ese techniques will allow us to
approximate the reachable state space and make more reasonable
goal choices. Furthermore, we want to improve the distance metric
by a�aching it to constraints that represent reachability conditions
of mutations.
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and Jyotirmoy V Deshmukh. 2015. E�cient guiding strategies for testing of
temporal properties of hybrid systems. In NASA Formal Methods Symposium.
Springer, 127–142.

[16] Gordon Fraser and Andrea Arcuri. 2011. Evolutionary Generation of Whole Test
Suites. In Proceedings of the 11th International Conference on �ality So�ware,
QSIC 2011, Madrid, Spain, July 13-14, 2011. (QSIC), Manuel Núñez, Robert M.
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