Automatically Verifying Typing Constraints
for a Data Processing Language

Michael Backes! 2, Citilin Hritcu®3, Thorsten Tarrach!'»%:°

!Saarland University, Saarbriicken, Germany 2MPI-SWS, Saarbriicken, Germany
3University of Pennsylvania, Philadelphia, USA
4 Atomia AB, Visterds, Sweden 5Troxo DOO, Ni§, Serbia

Abstract. In this paper we present a new technique for automatically verifying
typing constraints in the setting of a first-order data processing language with re-
finement types and dynamic type-tests. We achieve this by translating programs
into a standard while language and then using a general-purpose verification tool.
Our translation generates assertions in the while program that faithfully represent
the sophisticated typing constraints in the original program. We use a generic ver-
ification condition generator together with an SMT solver to prove statically that
these assertions succeed in all executions. We formalise our translation algorithm
using an interactive theorem prover and provide a machine-checkable proof of its
soundness. We provide a prototype implementation using Boogie and Z3 that can
already be used to efficiently verify a large number of test programs.

1 Introduction

Dminor [7] is a first-order data processing language with refinement types (types qual-
ified by Boolean expressions) and dynamic type-tests (Boolean expressions testing
whether a value belongs to a type). The combination of refinement types and dynamic
type-tests appears in a recent commercial language code-named M [2] and seems to be
very useful in practice. However, the increased expressivity allowed by this combina-
tion makes statically type-checking programs very challenging.

In this paper we present a new technique for statically checking the typing con-
straints in Dminor programs by translating these programs into a standard while lan-
guage. The sophisticated typing constraints in the original program are faithfully en-
coded as assertions in the generated program and we use a general-purpose verification
tool to show statically that these assertions succeed in all executions. This opens up
the possibility to take advantage of the huge amount of proven techniques and ongoing
research done on general-purpose verification tools.

We have proved that if all assertions succeed in the translated program then the orig-
inal Dminor program does not cause typing errors when executed. This proof was done
in the Coq interactive theorem prover [5], based on a formalisation of our translation
algorithm. We thus show formally that, for the language we are considering, a generic
verification tool can check the same properties as a sophisticated type-checker. To the
best of our knowledge, this is the first machine-checked proof of a translation to an
intermediate verification language (IVL).

Finally, we provide a prototype implementation using Boogie and Z3 that can al-
ready be used to verify a large number of test programs and we report on an experimen-
tal evaluation against the original Dminor type-checker.

1.1 Related work

Biermann et al. [7] were the first to study the combination of refinement types and
dynamic type-tests. They introduce a first-order functional language called Dminor,
which captures the essence of M [2], but which is simple enough to express formally.
They show that the combination of refinement types and dynamic type-tests is highly
expressive; for instance intersection, union, negation, singleton, dependent sum, vari-
ant and algebraic types are all derivable in Dminor. This expressivity comes, how-
ever, at a cost: statically type-checking Dminor programs is very challenging, since the
type information can be “hidden” deep inside refinements with arbitrary logical struc-
ture. For instance intersection types 7'&U are encoded in Dminor as refinement types
(x : Any where (2 in T && x in U)), where the refinement formula is the boolean con-
junction of the results of two dynamic type-tests. Syntax-directed typing rules cannot
deal with such “non-structural” types, so Biermann et al. [7] propose a solution based on
semantic subtyping. They formulate a semantics in which types are interpreted as first-
order logic formulae, subtyping is defined as a valid implication between the semantics
of types and they use an SMT solver to discharge such logical formulae efficiently.

The idea of using an SMT solver for type-checking languages with refinement types
is quite well established and was used in languages such as SAGE [17], F7 [6], Fine [30]
and Dsolve [29]. Biermann et al. [7] show that, in the setting of a first-order language,
the SMT solver can play a more central role: They successfully use the SMT solver
to check semantic subtyping, not just the refinement constraints. However, while in
Dminor [7] subtyping is semantic and checked by the SMT solver, type-checking is
still specified by syntax-directed typing rules, and implemented by bidirectional typing
rules. In the current work we show that we can achieve very similar results to those
of the Dminor type-checker without relying on any typing rules, by using the logical
semantics of Dminor types directly to generate assertions in a while program, and then
verifying the while program using standard verification tools.

Relating type systems and software model-checkers is a topic that has received at-
tention recently from the research community [15, 18, 25]. Our approach is different
since we enforce typing constraints using a verification condition generator. Our im-
plementation uses Boogie [20], the generic verification condition generation back-end
used by the Verified C Compiler (VCC) [10] and Spec# [4].

There is previous work on integrating verification tools such as Boogie [8] and
Why [13] with proof assistants, for the purpose of manually aiding the verification pro-
cess or proving the correctness of background theories with respect to natural models.
However, we are not aware of other machine-checked correctness proofs for transla-
tions from surface programming languages into IVLs, even for a language as simple
as the one described in this paper. A translation from Java bytecode into Boogie was
proved correct in the Mobius project [1, 19], but we are not aware of any mechanized
formalisation of this proof.

1.2 Overview

In §2 we provide a brief review of Dminor and in §3 we give a short introduction to our
intermediate verification language. §4 and §5 describe our translation algorithm and its
implementation. In §6 we compare our work to the Dminor type-checker [7]. Finally,
in §7 we conclude and discuss some future work. Further details, our implementation,
our Coq formalisation and proofs are all available online at:
http://www.infsec.cs.uni-saarland.de/projects/dverify.

2 Review of Dminor (Data Processing Language)

Dminor is a first-order functional language for data processing. We will briefly review
this language below; full details are found in the paper by Bierman et al. [7].

Values in Dminor can be simple values (integers, strings, Booleans or null), col-
lections (multi-sets of values) or entities (records). Dminor types include the top
type (Any), scalar types (Integer, Text, Logical), collection types (T*) and entity
types ({¢: T'}). More interestingly, Dminor has refinement types: the refinement type
(z : T where ¢) consists of the values x of type T satisfying the Boolean expression e.

Syntax of Dminor Expressions:
I

e = Dminor expression
x|k variables and scalar constants
d(er, ... en) primitive operator application
e1les : e3 conditional (if-then-else)
letz =e7ineq let-expression (z bound in es)
einT dynamic type-test
{l; = e; €11} entity (record with n fields ¢; . . . £,,)
el selects field ¢ of entity e
{v1,...,0n} collection (multiset)
el e adding element e; to collection eq
from x in ey let y = e accumulate e3 collection iteration (x, y bound in e3)
fler, ... en) function application

Refinement types can be used to express pre- and postconditions of functions, as
shown in the type of removeNulls below, where the postcondition states that the result-
ing collection has at most as many elements as the original collection.

Refinement type used to encode a pre- and postconditions
I

e.Count £ from z in e let y = 0 accumulate y + 1
NullableInteger = z : Any where (z in Integer || z == null)

removeNulls(c : Nullablelntegerx) : (z : Integerx where x.Count < ¢.Count) {
from x in ¢ let y = {} accumulate ((x # null)?(z :: y) : y)

}

http://www.infsec.cs.uni-saarland.de/projects/dverify

The dynamic type-test expression e in 1" pattern-matches the result of expression e
against the type T'; it returns true if e has type 1" and false otherwise. While dynamic
type-test are useful on their own in a data processing language (e.g. for pattern-matching
an XML document against a schema represented as a type [14]), they can also be used
inside refinement types, which greatly increases the expressivity of Dminor (e.g. it al-
lows encoding union, intersection, negation types, etc., as seen in the example above,
where Nullablelnteger is an encoded union type).

Bierman et al. [7] define a big-step operational semantics for Dminor, in which
evaluating an expression can return either a value or “error”. An error can for instance
arise if a non-existing field is selected from an entity. In Dminor such errors are avoided
by the type system, but in this work we rule them out using standard verification tools.
The type system by Bierman et al. uses semantic subtyping: they formulate a logical
semantics (denotational) in which types are interpreted as first-order logic formulae and
subtyping is defined as the valid implication between such formulae. More precisely,
they define a function F[T](v) that returns a first-order logic formula testing if the value
v belongs to a type T'. Since (pure) expressions can appear inside refinement types,
F[T] is defined by mutual recursion together with two other functions: R[e] returns a
first-order logic term denoting the result! of an expression e; and W[T](v) a formula
that tests if checking whether v is in type 1" causes an execution error. The reason for
the existence of W is that F is total and has to return a boolean even when evaluating
the expression inside a refinement type causes an error. Our translation makes use of the
functions F and W to faithfully encode the typing constraints in Dminor as assertions
in the generated while program.

3 Bemol (Intermediate Verification Language)

We define a simple intermediate verification language (IVL) we call Bemol. Bemol is
much simplified compared to a generic IVL: the number of language constructs has
been reduced and some Dminor-specific constructs that would normally be encoded
were added as primitives. We use Bemol to simplify the presentation, the formalisa-
tion of our translation and the soundness proof. In our implementation we use Boo-
gie [3,11,20] as the IVL and we encode all Bemol constructs that do not have a direct
correspondent in Boogie.

3.1 Syntax and Informal Semantics

Bemol is a while language with collections, records, asserts, mutually recursive pro-
cedures, variable scoping and evaluation of logical formulae. The syntax of Bemol is
separated into two distinct classes: expressions ¢, which are side-effect free, and com-
mands ¢, which have side-effects.

Our expressions allow basic operations on values, most of which directly corre-
spond to the operations in Dminor. Also the available primitive operators & are the

! Bierman et al. [7] show that R[e] coincides with the big-step operational semantics on pure
expressions — i.e., expressions without side-effects such as non-determinism (accumulate) and
non-termination (recursive functions).

same as in Dminor. The only significant difference is the expression formula f which
“magically” evaluates the logical formula f and returns a boolean encoding the validity
or invalidity of the formula — such a construct is standard in most IVLs. We use the
notation [[¢] s; for the evaluation of expression e under state st. In case of a typing error
(such as selecting a non-existing field from an entity) L is returned.

Syntax of Bemol Expressions:
I

e = Bemol expression
T variable
v Dminor value (scalar, collection or entity)
D(ery .-y en) primitive Dminor operator application
el selects field ¢ of entity e
e[l := o) updates field ¢ in entity ¢; with ey (produces new entity)
el i ey adds element e; to collection e, (produces new collection)
er\{e2} removes one instance of e from e; (produces new collection)
is_empty ¢ returns true if e is the empty collection; false otherwise
formula f returns true if formula f is valid in the current state

Syntax of Bemol Commands:
I

cu= Bemol command
skip does nothing
c1; Co executes c¢; and then co
T = e assigns the result of e to =
if e then c; else ¢y conditional
while e inv a do cend while loop with invariant a
assert f expects that formula f holds, causes error otherwise
r := pick e puts an element of e in (non-deterministic)
call P calls the procedure P
backup z in ¢ backs up the current state

Bemol commands manipulate the current global state, which is a total function that
maps variables to values. The invariant specified in the while command does not affect
evaluation; its only goal is to aid the verification condition generator. The pick com-
mand chooses non-deterministically an element from collection ¢ and assigns its value
to variable z. The call P command transfers control to procedure P, which will also
operate on the same global state. The backup = in ¢ command backs up the current state,
executes ¢ and once this is finished restores all variables to their former value except for
x. This is useful for simulating a call-stack for procedures, and we also introduce it dur-
ing the translation to simplify the soundness proof. A similar technique is employed by
Nipkow [26] for representing local variables. We use this in our encoding for procedure
calls below. The encoding uses an entity to pass multiple arguments.

Encoding of procedure calls
I

r = callP(ey,...,e,) =
backup z in (
arg := {};arg := arg[ly :=e1];...;arg = argll, :=e,];call P;z = ret)

procedure P(z1,...,z,){c} 2 procP {z; = arg.ly;...;z, = arg.ly; c}
|

3.2 Operational semantics

We define the big-step semantics of Bemol as a relation st %5 r, where r can be
either a final state stfy,q; or Error. The only command that can cause an Error is the
assert command; all the other commands simply “bubble up” the errors produced by
failed assertions. If an expression evaluates to L it will lead to the divergence of the
command that contains it, but this does not cause an error.>

3.3 Hoare logics and verification condition generation

We define a Hoare logics for our commands, based on the Software Foundations lecture
notes [27] and the ideas of Nipkow [26].

Definition 1 (Hoare triple). We say that a Hoare triple = {P} c{Q} holds seman-
tically if and only if Vst r. st — r == Vz. P z st = true = 3st’.r =
st' AQ z st’ = true.

By requiring that the result of the command is not Error but an actual state st’
we ensure that correct programs do not cause assertions to fail. The meta-variable z is
an addition to the traditional Hoare triple and models auxiliary variables, which need
to be made explicit in the presence of recursive procedures. Our treatment of auxiliary
variables and procedures follows the one of Nipkow [26], who formalises an idea by
Morris [24] and Kleymann [16].

The Hoare rules for the standard commands are the same as in Nipkow’s work [26],
we just list the rules for the constructs that are new to Bemol.

Selected Hoare Rules for Bemol
I 1

(Hoare Assert) (Hoare Pick)

C E={QANa}asserta {Q} C E{\zst. Vv € [e]o, P{v/z} z st} x := pick e {P}

(Hoare Backup)
Vst'.C = {2z st. Pz st Ast’' = sthc{Azst. Q{st x/z} = st'}

C |= {P} backup z in ¢ {Q}

2 Since we only reason about partial-correctness, diverging programs are considered correct.
This makes the assumptions on our encoding of Bemol into Boogie be minimal: we only
assume that the asserts and successful evaluations of the other commands are properly encoded
in Boogie. In §4 we prove that we add enough asserts to capture all errors in the original
Dminor program, even under these conservative assumptions we make in the Bemol semantics.

The backup z in ¢ command requires that the Hoare triple for ¢ has the same state
for the pre- and postcondition, except for variable x which is updated. We “transfer”
the state from the pre- to the postcondition by quantifying over a new state st’ that we
require to be equal to the state in the precondition.

For our semantics of the Hoare triples it is possible to define a weakest precondition,
but not a strongest postcondition function. This is because if ¢ evaluates to Error no
postcondition is strong enough to make the triple valid. Corresponding to the Hoare
rules, we define a verification condition generator (VCgen ¢ @)), which takes a command
c and a postcondition () as arguments and generates a precondition. We have proved that
this is sound, however, the VCgen is not guaranteed to return the weakest precondition,
because the user-provided loop invariants are not necessarily the best. The soundness
proof of the VCgen crucially relies on the soundness of the Hoare logic rules above.

More importantly for our application, we have proved as a corollary that the pro-
grams deemed correct by our VCgen do not cause errors when executed.

Theorem 1 (Soundness of VCgen).
IfVCgen ¢ Q returns a valid formula, then fst. st — Error.

4 Translation from Dminor to Bemol

Our translation algorithm is a function (e)) , that takes a Dminor program and a vari-
able name z as input and outputs a Bemol program. The variable x is where the gen-
erated Bemol program should store the result after it executes. We will introduce the
translation using two examples.

In the examples below we consider out to be the variable where the result is put. In
Example 1 we show how the removeNulls example from §2 is translated to a while loop
that picks and removes elements from the collection until it is empty.

Example 1: Accumulate filtering null values

I
removeNulls(c : Nullablelnteger) : procedure removeNulls(c) {
(z : (Integerx) where (z.Count < ¢.Count))| assert F[Nullablelntegerx](c);
{ y = {k
fromzinclety = {} d = ¢
accumulate ((x # null)?(z 1 y) : y) while lis_empty ¢ inv i(c, ¢/, y) do
} x = pick c;
¢ = M\
if # null then
yi=zxzuy
else
y =y
end;
ret (= y;
assert (F [z : Integers
where y.Count < ¢.Count) ret]

}

i(c,c’,y) = F[y : (Integerx) where (¢’.Count + y.Count < c.Count)] y

The loop invariant specifies that the sum of the number of elements in the the inter-
mediate collection ¢’ and the resulting collection y is less or equal than the number of
elements in the original collection c. It is not sufficient for the invariant to just reason
over y and c as this would be too weak. In this case the invariant is provided by hand on
the generated code because this loop invariant is not expressible as a Dminor type. Loop
invariant inference on the Dminor side is in general deemed to fail for global properties
of collections. Our implementation successfully verifies this example with the provided
invariant and in the future we hope to infer such invariants automatically.

As seen in Example 2 for type-tests we first use an assert to check that the type-
test does not cause a typing-error and then perform the actual type-test which returns a
Logical. Note that F is total and would also return a value on a wrongly typed argument.

Example 2: Type-test

I
xin (y : Integer where y > 5)|assert (=(W[y : Integer where y > 5] x));
out := formula (F[y : Integer where y > 5] z)

For illustration, we expand W and F in the example above; please see the paper by
Bierman et al. [7] for the precise definition of these functions of the logical semantics.

W]y : Integer where y > 5] =
= W(Integer] = V let y = z in =(R[y > 5] = Return(false)
VR[y > 5] = Return(true))
= false V —((if F[Integer] « then Return(z > 5) else Error) = Return(false)
V (if F[Integer] = then Return(z > 5) else Error) = Return(true))
= —F[Integer] = = —(In_Integer x)

F[y : Integer where y > 5] x
= F[Integer] « Alet y = = in R[y > 5] = Return(true)
= In_Integer = A (if In_Integer x then Return(z > 5) else Error) = Return(true)
E In_Integerz Az > 5

In case x is not an integer the formula In_Integer x A x > 5 is logically equivalent
to false. Our translation asserts that = is an integer before calling formula in order to
match the semantics of Dminor, in which z > 5 causes an error when x is not an integer.

4.1 Soundness

We have proved in Coq that if a Dminor program e can raise an error, then the translated
program (e) , can evaluate to an error in Bemol. The contrapositive of this is: if the
translated program cannot evaluate to an error, then the original Dminor program cannot
evaluate to an error either. We have proved this theorem in Coq by induction over the
big-step semantics of Dminor |}.
Theorem 2 (Soundness of translation). /f e || Error then Vst. st «p—»f Error.

As an immediate consequence of Theorem 1 and Theorem 2 we obtain the sound-
ness of our whole technique.

Corollary 1 (Soundness). [fVCgen (e })) , true is a valid formula, then e Jf Error.

5 Implementation

Our implementation is called DVerify and translates a Dminor program into a Boogie
program. DVerify is written in F# 2.0 [22] and consists of more than 1200 lines of code,
as well as a 700 line axiomatisation that defines the Dminor types and functions in
Boogie. The Boogie tool then takes the translated Boogie program as input and outputs
either an error message that describes points in the program where certain postcondi-
tions or assertions may not hold [21] or otherwise prints a message indicating that the
program has been verified successfully.

5.1 High-level overview

The heart of our translation algorithm consists of a recursive function that goes over
a Dminor expression and translates it into Boogie code. This function is called once
per Dminor function and produces a Boogie procedure. Types in Dminor are translated
into Boogie function symbols returning bool, using another recursive function in our
implementation.

The while loops produced by the translation use the type annotation of accumulate
in the source program to generate an invariant for our while loop. In the future we
intend to infer such loop invariants automatically using the Boogie infrastructure for
this task. The Dminor language as implemented by the type-checker allows for one
more construct to define a loop, a from-where-select as in LINQ [23]. In theory from-
where-select can be encoded using accumulate, but in the Dminor implementation it
is considered primitive in the interest of efficiency and to reduce the type annotation
burden. Since from-where-select does not carry a type annotation, we have to find one
during translation. For that we use a modified version of the type-synthesis from Dminor
that does not call the type-checking algorithm and therefore never fails to synthesise a
type for an expression.

We use the Dminor implementation as a library so that we do not have to reim-
plement existing functionality. This is mainly the parser for Dminor files, the purity
checking and a weak form of type-synthesis for from-where-select.

5.2 Axiomatisation

A big part of the implementation is the axiomatisation of Dminor values and functions
in Boogie. This is necessary because Boogie as such understands only two sorts, bool
and int, whereas Dminor and Bemol have a number of primitive and composite values,
such as collections and entities. Our axiomatisation is similar to the axiomatisation the
Dminor type-checker feeds to Z3 [7]. In Dminor this axiomatisation is written in SMT-
LIB 1.2 syntax [28] and directly fed to Z3 with the proof obligation. Our axiomatisation
is in the Boogie language and Boogie translates it to Simplify syntax [12] and feeds it
to Z3 along with the verification conditions it generates. Dminor makes heavy usage of
the theories Z3 offers, such as extensional arrays and datatypes for example. We use the
weak arrays provided by Boogie by default and encode datatypes by hand.

Table 1 Precision comparison

well-typed ill-typed
Test suite 76 33
DMinor accepts 66 0
DVerify accepts 62 2 (correct programs)

Chart 1 Speed comparison (average times for 66 well-typed samples)

sec2 Total Time Internal Time 06 Std. Dev.

1.5 e — 0.4 M Boogie
[—_— [J Translation
0.2 ® DMinor

05 -
. =

6 Comparison between Dminor and DVerify

We have tested our implementation against Dminor 0.1.1 from September 2010. Mi-
crosoft Research gave us access to their Dminor test suite that contains 109 sample
programs. Out of these 109 tests 76 are well-typed Dminor programs and 33 are ill-
typed. Out of the 76 well-typed programs the Dminor type-checker cannot verify 10
tests because of incompleteness.

As shown in Table 1, from the 66 cases on which Dminor succeeds, DVerify man-
ages to verify 62 as correct. Out of the 33 that Dminor rejects, DVerify rejects 31. The
other two are correct operationally, but are ill-typed with respect to the (inherently in-
complete) Dminor type system. Overall this means that DVerify succeeds on 94% of the
cases Dminor succeeds on and is able to verify two correct programs Dminor cannot
verify. For the 4 correct programs that DVerify cannot verify the most common problem
is that type-synthesis generates too complicated loop invariants and Z3 cannot handle
the resulting proof obligations.

In order to compare efficiency, we first measured the overall wall-clock time that is
needed by the two tools, which includes the time the operating system requires to start
the process. Because we are dealing with a large number of small test files and both
tools are managed .NET assemblies, initialisation dominates the total running times of
both tools. Since initialisation is a constant factor that becomes negligible on bigger ex-
amples, we also measured the time excluding initialisation and parsing, which we call
“internal time”. Chart 1 shows both times (averaged over the 66 well-typed samples
accepted by Dminor) on a 2.1 GHz laptop. The internal time is 0.5s on average for both
Dminor and DVerify, which means that both tools are very efficient and that our combi-

Table 2 Qualitative comparison of Dminor and DVerity

Area Our verification approach Type-checking approach
(DVerify) (DMinor)
Verification cond. generation Weakest precondition Bidirectional type-checking

(type synthesis = strongest
postcondition)

Formulae discharged One per postcondition/assertion One per subtyping test
(larger, but less obligations) (smaller; but more obligations)

Backend Boogie + SMT-Solver (Z3) SMT-Solver (Z3)

Loop invariants In principle Boogie could infer For from-where-select
some (even for accumulates) (but not for accumulates)
(even for global properties) (but not for global properties)

Error reporting Abstract trace Counterexample

Speed similar similar

Precision (practise) similar similar

Completeness (theory) possibly better possibly worse (type system)

Theories equality, integers, datatypes, weak equality, integers, extensional arrays and
arrays native encoding of datatypes

nation of a translation and an off-the-shelf verification condition generator matches the
average speed of a well-optimised type-checker on its own test suite.

One should keep in mind that all examples in this test suite are relatively small, the
biggest one consisting of 90 lines. With bigger examples we expect DVerify to have a
speed advantage over Dminor. This is for once due to the much lower standard deviation
of DVerify, which indicates a better predictability. It is also reflected in the maximum
internal time, where Dminor (3.97s) does three times worse than DVerify (1.35s). The
qualitative comparison in Table 2 visualises a summary of this discussion.

7 Conclusion

In this paper we have presented a new technique for statically checking the typing con-
straints in Dminor programs by translating these programs into a standard while lan-
guage and then using a general-purpose verification tool.

Future Work

Using a general verification tool for checking the types of Dminor programs should
allow us to increase the expressivity of the Dminor language more easily. For example,
adding support for mutable state would be easy in DVerify: Bemol already supports
state, moreover Boogie is used mainly for imperative programming languages [9]. An
interesting consequence is that it should be easier to support strong updates in DVerify
(i.e. updates that change the type of variables), which is usually quite hard to achieve
with a type-checker.

Another very interesting extension is inferring loop invariants. Dminor requires
that each accumulate expression is annotated with a type for the accumulator which
constitutes the invariant of the loop, whereas Boogie has build-in support for abstract
interpretation for automatically inferring such invariants [3]. While the invariant infer-
ence support in Boogie seems currently very much focused on integer domains, it seems
possible to extend it to include support for our Dminor types.

Finally, we would like to improve the error reporting capabilities of DVerify. When
an assertion fails, Boogie produces an abstract execution trace that outlines which
branches were taken to reach the failing assertion and where that assertion is located
in the code [21]. In the future we would like to map this trace back to a Dminor trace,
and produce errors in terms of the original Dminor program. More interestingly, we
would also like to map the partial model produced by the SMT solver when it fails
to prove a proof obligation, back as a potential counterexample assignment that maps
variables to Bemol values. The Dminor type-checker [7] already implements this and it
works quite well, but in Dminor this is implemented from scratch. For DVerify the IVL
toolset could in principle provide more support for mapping back the models produced
by the SMT solver to something that the end-user can understand.

Acknowledgements We thank Andrew D. Gordon for his helpful comments and the
BOOGIE 2011 reviewers for their very useful feedback. Microsoft Research made our
work much easier by making the Dminor source code available to us. Catalin Hritcu was
supported by a fellowship from Microsoft Research and the International Max Planck
Research School for Computer Science.

References

1. Bytecode level specification language and program logic. Mobius Project, Deliverable D3.1,
2006.

2. The Microsoft code name "M" Modeling Language Specification, October 2009. http:
//msdn.microsoft.com/en-us/library/dd548667.aspx.

3. M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: A modular
reusable verifier for object-oriented programs. In 4th International Symposium on Formal
Methods for Components and Objects (FMCO), Lecture Notes in Computer Science, pages
364-387. Springer, 2005.

4. M. Barnett, K. Leino, and W. Schulte. The Spec# programming system: An overview. In
Workshop on Construction and Analysis of Safe, Secure and Interoperable Smart devices
(CASSIS), pages 49-69. Springer, 2005.

5. B. Barras, S. Boutin, C. Cornes, J. Courant, Y. Coscoy, D. Delahaye, D. de Rauglaudre,
J. Filliatre, E. Giménez, H. Herbelin, et al. The Coq proof assistant reference manual, version
8.2. INRIA, 2009.

6. J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis. Refinement types for
secure implementations. ACM TOPLAS, 33(2):8, 2011.

7. G. M. Bierman, A. D. Gordon, C. Hritcu, and D. Langworthy. Semantic subtyping with an
SMT solver. In 15th ACM SIGPLAN International Conference on Functional programming
(ICFP 2010), pages 105-116. ACM Press, 2010.

8. S.Bohme, K. R. M. Leino, and B. Wolff. HOL-Boogie - an interactive prover for the Boogie
program-verifier. In 21st International Conference on Theorem Proving in Higher Order
Logics (TPHOLs), pages 150-166. Springer, 2008.

http://msdn.microsoft.com/en-us/library/dd548667.aspx
http://msdn.microsoft.com/en-us/library/dd548667.aspx

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

. E. Cohen, M. Moskal, S. Tobies, and W. Schulte. A precise yet efficient memory model for

C. Electronic Notes in Theoretical Computer Science, 254:85-103, 2009.

M. Dahlweid, M. Moskal, T. Santen, S. Tobies, and W. Schulte. VCC: Contract-based mod-
ular verification of concurrent C. In 31st International Conference on Software Engineering
(ICSE), pages 429-430. IEEE, 20009.

R. DeLine and K. Leino. BoogiePL: A typed procedural language for checking object-
oriented programs. Technical Report MSR-TR-2005-70, Microsoft Research, 2005.

D. Detlefs, G. Nelson, and J. Saxe. Simplify: A theorem prover for program checking.
Journal of the ACM (JACM), 52(3):473, 2005.

J.-C. Filliatre and C. Marché. The Why/Krakatoa/Caduceus platform for deductive program
verification. In 19th International Conference on Computer Aided Verification (CAV), pages
173-177. Springer, 2007.

H. Hosoya and B. Pierce. XDuce: A statically typed XML processing language. ACM
Transactions on Internet Technology, 3(2):117-148, 2003.

R. Jhala, R. Majumdar, and A. Rybalchenko. HMC: Verifying functional programs using
abstract interpreters. Accepted at CAV, 2011. To appear.

T. Kleymann. Hoare logic and auxiliary variables. Formal Aspects of Computing, 11(5):541-
566, 1999.

K. Knowles, A. Tomb, J. Gronski, S. Freund, and C. Flanagan. SAGE: Unified hybrid check-
ing for first-class types, general refinement types and Dynamic. Technical report, UCSC,
2007.

N. Kobayashi and C.-H. L. Ong. A type system equivalent to the modal mu-calculus model
checking of higher-order recursion schemes. In 24th Annual IEEE Symposium on Logic in
Computer Science (LICS), pages 179-188. IEEE Computer Society, 2009.

H. Lehner and P. Miiller. Formal translation of bytecode into BoogiePL. Electronic Notes in
Theoretical Computer Science, 190(1):35-50, 2007.

K. R. M. Leino. This is Boogie 2. TechReport, 2008.

K. R. M. Leino, T. Millstein, and J. Saxe. Generating error traces from verification-condition
counterexamples. Science of Computer Programming, 55(1-3):209-226, 2005.

C. Marinos. An Introduction to Functional Programming for .NET Developers. MSDN
Magazine, April 2010.

E. Meijer, B. Beckman, and G. M. Bierman. LINQ: reconciling object, relations and XML in
the .NET framework. In ACM SIGMOD International Conference on Management of Data
(SIGMOD), page 706. ACM, 2006.

J. Morris. Comments on "procedures and parameters". Undated and unpublished.

M. Naik and J. Palsberg. A type system equivalent to a model checker. ACM Transactions
on Programming Languages and Systems (TOPLAS), 30(5):29, 2008.

T. Nipkow. Hoare Logics in Isabelle/HOL. In Proof and System-Reliability, pages 341-367.
Kluwer, 2002.

B. Pierce, C. Casinghino, M. Greenberg, V. Sjoberg, and B. Yorgey. Software Foundations.
http://www.cis.upenn.edu/~bcpierce/st/,2010.

S. Ranise and C. Tinelli. The satisfiability modulo theories library (SMT-LIB). www.
SMT-LIB.org, 2006.

P. M. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In ACM SIGPLAN 2008 Confer-
ence on Programming Language Design and Implementation (PLDI), pages 159-169, 2008.
N. Swamy, J. Chen, and R. Chugh. Enforcing stateful authorization and information flow
policies in Fine. In Proc. 19th European Symposium on Programming (ESOP 2010), pages
529-549, 2010.

http://www.cis.upenn.edu/~bcpierce/sf/
www.SMT-LIB.org
www.SMT-LIB.org

