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Abstract
We present a method and a tool for generating succinct representa-
tions of sets of concurrent traces. We focus on trace sets that contain
all correct or all incorrect permutations of events from a given trace.
We represent trace sets as HB-formulas that are Boolean combina-
tions of happens-before constraints between events. To generate a
representation of incorrect interleavings, our method iteratively ex-
plores interleavings that violate the specification and gathers gen-
eralizations of the discovered interleavings into an HB-formula; its
complement yields a representation of correct interleavings.

We claim that our trace set representations can drive diverse ver-
ification, fault localization, repair, and synthesis techniques for con-
current programs. We demonstrate this by using our tool in three
case studies involving synchronization synthesis, bug summariza-
tion, and abstraction refinement based verification. In each case
study, our initial experimental results have been promising.

In the first case study, we present an algorithm for inferring
missing synchronization from an HB-formula representing cor-
rect interleavings of a given trace. The algorithm applies rules to
rewrite specific patterns in the HB-formula into locks, barriers,
and wait-notify constructs. In the second case study, we use an
HB-formula representing incorrect interleavings for bug summa-
rization. While the HB-formula itself is a concise counterexample
summary, we present additional inference rules to help identify spe-
cific concurrency bugs such as data races, define-use order viola-
tions, and two-stage access bugs. In the final case study, we present
a novel predicate learning procedure that uses HB-formulas rep-
resenting abstract counterexamples to accelerate counterexample-
guided abstraction refinement (CEGAR). In each iteration of the
CEGAR loop, the procedure refines the abstraction to eliminate
multiple spurious abstract counterexamples drawn from the HB-
formula.

Categories and Subject Descriptors D [2]: 4—Formal methods

Keywords Trace Generalization; Concurrent Programs; Synchro-
nization Synthesis; Bug Summarization; CEGAR
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1. Introduction
Sets of concurrent traces containing permutations of events from a
given concurrent trace are useful for predictive analysis (e.g., [24,
34, 35, 41]) and synchronization synthesis (e.g., [8, 9]) of shared-
memory concurrent programs. Most approaches using such trace
sets are restricted to specific aspects of reasoning about concurrent
programs such as data race detection [24, 34], detection of safety
violations [35, 41] and fixing assertion failures [8, 9]. Moreover,
the representations of trace sets and exploration strategies used in
some of these approaches [8, 9, 35]) underapproximate the target
trace sets. In this paper, we present a succinct, complete represen-
tation of such concurrent trace sets, which can drive diverse verifi-
cation, fault localization, repair, and synthesis techniques for con-
current programs. The representation is complete in the sense that
it encodes every trace in the trace set of interest.
Concurrent trace sets. First, we fix some terminology. An exe-
cution π of a concurrent program P is an alternating sequence of
variable valuations and events corresponding to a feasible interleav-
ing of instructions from the threads of P . An execution is good if
it satisfies a given specification, and bad otherwise. A trace is a
sequence of events corresponding to an interleaving of instructions
from the threads of P . The trace of an execution π is the sequence
of events within π. The language L(τ) of a trace τ is the set of all
executions with trace τ . A trace τ is feasible if L(τ) is non-empty,
and infeasible otherwise. A feasible trace τ is good if all executions
in L(τ) are good, and bad otherwise.

We group traces into neighbourhoods. The neighbourhood Nτ
of a trace τ contains all permutations of τ that preserve τ ’s intra-
thread event order. The good neighbourhoodN g

τ of a trace τ is the
set containing all the good traces in Nτ . The bad neighbourhood
N b
τ of a trace τ is a set containing all the bad traces in Nτ .

The languages L(Nτ ), L(N g
τ ) and L(N b

τ ) are the unions of the
languages of all traces inNτ ,N g

τ andN b
τ , respectively.

Representation of concurrent trace sets. There are multiple ways
to represent trace sets. Some representations may be more expres-
sive or useful for reasoning about concurrent programs than oth-
ers. A candidate representation that has been used for certain trace
sets is a partial order over events [8, 9, 41]. The neighbourhood of
a trace, as defined above, can also be represented as a partial or-
der. However, the good neighbourhood or the bad neighbourhood
of a trace is, in general, not a partial order. For instance, for the

∗This research was supported in part by the European Research Council
(ERC) under grant agreement 267989 (QUAREM), by the Austrian Science
Fund (FWF) NFN project S11402-N23 (RiSE), and the NSF Expeditions
award CCF 1138996.



Figure 1 Online banking: This trace is drawn from a program
consisting of three threads, one for withdrawing money, one for
depositing money, and one for checking consistency of the bank
account after completion of a withdrawal and a deposit.a

globalvars: int x, withdrawal, deposit, balance,
deposited, withdrawn;

init: x = balance; deposited = 0; withdrawn = 0;
withdrawal > 0; deposit > 0;

thread withdraw:
localvars: int temp;
TW[1]: temp := balance;
TW[2]: balance := temp - withdrawal;
TW[3]: withdrawn := 1;

thread deposit:
localvars: int temp;
TD[1]: temp := balance;
TD[2]: balance := temp + deposit;
TD[3]: deposited := 1;

thread checkresult:
TC[1]: assume (deposited = 1 and withdrawn = 1);
TC[2]: assert (balance = x + deposit - withdrawal);

Exact representation ofN bτ :
hb(TW[1], TD[2])∧hb(TD[1], TW[2])∧hb(TW[3], TC[1])∧hb(TD[3], TC[1])
Exact representation ofN gτ :
(hb(TD[2], TW[1]) ∨ hb(TW[2], TD[1])) ∧ hb(TW[3], TC[1]) ∧
hb(TD[3], TC[1])
Representation of sound overapproximation ofN bτ :
hb(TW[1], TD[2]) ∧ hb(TD[1], TW[2])
Representation of sound overapproximation ofN gτ :
hb(TD[2], TW[1]) ∨ hb(TW[2], TD[1])

aIn all the examples in this paper, we represent traces using typed
global variable declarations/initializations, followed by each thread’s typed
local variable declarations and instructions. Note that this representation
depicts a trace and not a program.

trace τ in Fig. 1,N g
τ is not a partial order, but is a disjunction (i.e.,

union) of partial orders. In our work, we represent trace sets as HB-
formulas. An HB-formula is a Boolean combination of happens-
before causality constraints between events. HB-formulas can rep-
resent arbitrary finite sets of finite traces, and in particular, good
and bad neighbourhoods (see Fig. 1). As we will see later, HB-
formulas are not only expressive, but also versatile enough to be
usable for diverse objectives.

Given a trace τ and a correctness specification, we present
a method to generate an HB-formula ϕB representing the bad
neighbourhood of τ . To generate ϕB , we first encode all the bad
executions in L(Nτ ) in a quantifier-free first-order formula Φ such
that an execution π is a model of Φ iff π is a bad execution in
L(N b

τ ). We then incrementally construct ϕB . Initially, ϕB is set
to false. In each step: (1) we invoke an SMT solver to obtain a
model for Φ that does not belong to the language of the subset of
N b
τ represented by the current ϕB , (2) generalize the trace of the

model into an HB-formula ϕ, and (3) update ϕB by adding ϕ as
a disjunct. We iterate until there is no new model of Φ. The trace
generalization used in each iteration has the following properties:
(a) the model obtained in the iteration satisfies ϕ, and (b) any trace
in Nτ that satisfies ϕ is bad. The final HB-formula obtained is an
exact representation ofN b

τ .
While an exact representation is a worthy goal, the correspond-

ing ϕB may not be succinct. To gain succinctness and utility, we
trade in exactness. In particular, we permit the inclusion of infea-
sible traces to obtain a succinct HB-formula representing a sound

overapproximation of N b
τ . The overapproximation of N b

τ is sound
in the sense that it is guaranteed to not include any good traces. To
generate such a succinct HB-formula, we enhance the above proce-
dure. We use data-flow analysis and minimal unsatisfiability core
(unsat core) computation for generalizing the trace of the model
into an HB-formula ϕ in step (2) of each iteration. This new trace
generalization step has the following properties: (a) the model ob-
tained in the iteration satisfies ϕ, and (b) any trace inNτ satisfying
ϕ is either bad or infeasible.

Complementing ϕB , the succinct representation of a sound
overapproximation of N b

τ yields ϕG, a succinct representation of
a sound overapproximation of N g

τ . Note that complementing the
exact representation of N b

τ does not yield an exact representation
of N g

τ . In fact, our existing methodology cannot produce an exact
representation of N g

τ . Fig. 1 shows the exact representation of N b
τ

and the representations for sound overapproximations of N g
τ and

N b
τ obtained by our method for the example trace shown.
We implemented the above procedure as a tool TARA and used

it to generate (succinct) representations of trace sets of programs
drawn from the software verification competition (SV-Comp) [3]
and the regression suites of ESBMC [31] and CONREPAIR [9].

We demonstrate the applicability of our representations of good
and bad neighbourhoods of a trace to three case studies involv-
ing synchronization synthesis, bug summarization and verification
based on counterexample-guided abstraction refinement (CEGAR).
Case Study: Synchronization synthesis. Shared-memory concur-
rent programs are excellent targets for automated program com-
pletion, in particular, for synthesis of missing synchronization
[8, 9, 13, 30, 39]. We present a novel algorithm that uses ϕG
to synthesize synchronization for eliminating the bad neighbour-
hood of τ . The algorithm proceeds by applying rewrite rules to
derive synchronization primitives such as mutex locks, barriers,
shared exclusive locks and wait-notify statements from easily-
identifiable patterns in ϕG. For example, a missing mutex lock
in the example in Fig. 1 that ensures the instructions at TW[1]
and TW[2] in thread withdraw do not interfere with the instruc-
tions TD[1] and TD[2] in thread deposit is identified by the pat-
tern hb(TD[2], TW[1]) ∨ hb(TW[2], TD[1]) in ϕG. We emphasize that
most other synchronization synthesis techniques generate atomic
sections rather than locks, wait-notify statements etc. Atomic sec-
tions are not directly implementable. Moreover, our synchroniza-
tion primitives can potentially permit more correct concurrent be-
haviours than atomic sections. We have implemented this algorithm
as an extension of our tool TARA and used it to successfully syn-
thesize synchronization for our benchmarks.
Case Study: Bug summarization. Error detection tools based on
model checking and static analyses typically provide counterexam-
ple traces to help with program debugging. However, these traces
can be long and encumbered with unnecessary data, providing lit-
tle insight about the actual bug. In our second case study, we use
ϕB , the representation for a sound overapproximation of a trace’s
bad neighbourhood, for counterexample and bug summarization.
The HB-formula ϕB encodes relevant ordering information about
all counterexamples in the neighbourhood of τ and can be viewed
as a stand-alone counterexample summary. While this can already
be useful feedback for a human debugger, we present a set of rules
to infer specific bugs such as data races, atomicity violations, two-
stage access bugs and define-use order violations. These rules work
by identifying particular patterns in ϕB and combining them with
some lightweight data-flow information. We have extended TARA
for bug summarization and evaluated it on our benchmarks.
Case Study: Accelerating CEGAR. We also recognize an ap-
plication of our representation of bad neighbourhoods of abstract
counterexamples in accelerating CEGAR for concurrent programs.
CEGAR often takes many iterations to find the right predicates for



proving correctness of a program. The choice of refinement proce-
dure usually determines the number of iterations necessary. Many
heuristics have been proposed to find relevant predicates quickly,
e.g., [4]. This problem is compounded in concurrent program ver-
ification, where the existence of a large number of interleavings
can delay the discovery of interesting spurious counterexamples
that lead to relevant predicates. We present a new predicate learn-
ing procedure that uses the HB-formula ϕB representing the bad
neighbourhood of a spurious counterexample of an abstract concur-
rent program. In each iteration of the CEGAR loop, our procedure
refines the abstraction to eliminate multiple spurious abstract coun-
terexamples drawn from ϕB , using a method similar to beautiful
interpolants [1]. We have integrated our TARA-based refinement
procedure within SATABS [12] and have been able to reduce the
number of iterations needed to verify various example programs.
Highlights. We introduce a novel representation for concurrent
trace sets based on HB-formulas (Sec. 2). HB-formulas have sev-
eral useful properties. They can express arbitrary finite trace sets.
They enable efficient computation and concise expression of unions
over trace sets. This is exploited by our tool TARA to compute suc-
cinct representations of sound overapproximations of good and bad
neighbourhoods of a trace. HB-formulas are an intuitively appeal-
ing representation for trace sets. They can reveal specific patterns
of causality relations between events that can drive diverse verifica-
tion, fault localization, repair, and synthesis techniques for concur-
rent programs. We demonstrate the use of our tool in three appli-
cations — synchronization synthesis (Sec. 3), bug summarization
(Sec. 4), and CEGAR acceleration (Sec. 5).

2. Trace Neighbourhoods and Representations
In this section, we formalize concurrent executions, traces and trace
neighbourhoods. We also present algorithms and experimental re-
sults for computing good and bad neighbourhoods. The case studies
in Sections 3, 4, and 5 are based on the techniques presented here.
2.1 Concurrent Programs and Traces
We consider shared-memory concurrent programs composed of a
fixed number of sequential threads. In further discussion, we fix a
concurrent program P = 〈V, {T1, . . . , Tk}, SV, 〈LV1, . . . , LVk〉〉
where {T1, . . . , Tk} are a set of threads, SV is a set of shared
variables, each LVi is the set of local variables of thread Ti, and
V = SV ∪

⋃
i LVi is the set of all variables. Let Vi = SV ∪ LVi

denote the set of variables that can be read from and written by
thread Ti. As the main objects of study in this paper are traces,
we keep the exposition simple by not specifying syntactic and con-
trol flow details of threads at this stage. In this paper, we assume
that variables range over integers and program instructions perform
standard linear arithmetic operations. However, our techniques ap-
ply to a much wider variety of variable domains and operations.
Concurrent executions. A concurrent execution π = Γ0e1Γ1 . . .
Γn−1enΓn is an alternating sequence of valuations Γi of variables
V and events ei corresponding to some interleaving of instructions
from the threads in P—for each i, execution of ei from valuation
Γi−1 leads to valuation Γi. Each event e is a labelled statement
of the form T[`] : stmt, where T is a thread identifier, ` is a
location identifier∗, and stmt is an atomic instruction. We write
pid(e) for the thread identifier T. Without loss of generality, we
assume that the location identifiers of events from each thread are
sequential natural numbers, i.e., the first event from a thread gets
location identifier 1, the next gets 2, and so on. Further, we abuse
notation by often writing T[`] instead of the event with label T[`].
We represent the sequence of events from thread T with location

∗We assume that all location identifiers from one thread are unique.
Thus, multiple occurrences of the same instruction (for example, in the body
of a loop) are relabelled with unique identifiers.

identifiers between ` and `′ (inclusive) by T[` : `′]. We also use the
symbol L to denote location identifier ranges such as ` : `′.

We use two different formalisms to express atomic instructions.
• Guarded actions. Here, an instruction from thread Ti is

either a guarded action assume(G) → assign or an
assertion assert(G), where G is a Boolean expression
over Vi and assign is a parallel assignment v1, . . . , vm :=
expr1, . . . , exprm of expressions over Vi to variables in Vi.
• Transition predicates. Here, an instruction from thread Ti is a

predicate over variables from Vi∪V ′i where V ′i contains primed
versions of variables in Vi. Intuitively, variables from Vi and V ′i
represent the values of program variables before and after the
execution of the instruction, respectively. For example, the as-
signment x := x + y is represented as x′ = x + y. The advan-
tage of this formalism is that it can express non-deterministic
statements which we need to model abstract programs in Sec. 5.
Assertions are represented as before, i.e., as assert(G), where
G is a Boolean expression over Vi.

An execution π = Γ0e1Γ1 . . . enΓn is good if for each assertion
ei = T[`] : assert(G), the Boolean expression G evaluates to
true under valuation Γi−1; the execution is bad otherwise.
Concurrent traces. A concurrent trace τ = e1 . . . en is a sequence
of events that corresponds to some interleaving of instructions from
threads in P . The language L(τ) of a trace τ = e1 . . . en is the set
of all executions Γ0e

′
1Γ1 . . . e

′
nΓn+1 where ei = e′i for i ∈ [1, n].

For a set of traces N, we abuse notation and write L(N) instead
of
⋃
σ∈N L(σ). We denote by events(τ) the set {e1, . . . , en}

of events in τ . For any two events ei, ej ∈ events(τ), we say
ei <τ ej if ei occurs before ej in τ .

A trace τ is feasible if its language has at least one execution
(i.e., L(τ) 6= ∅), and is infeasible otherwise. A feasible trace τ is
good if all executions in L(τ) are good, and is bad otherwise.

2.2 Representing Trace Neighbourhoods
We reason about traces that differ only in the scheduling choices
using trace neighbourhoods. The neighbourhoodNτ of a trace τ is
a set of traces Nτ = {σ | events(σ) = events(τ) ∧ ∀ei, ej ∈
events(τ) : pid(ei) = pid(ej)∧ei<τej ⇒ ei<σej}. Intuitively,
Nτ contains all traces having the same events as τ and having the
same order of events within each thread. A trace in Nτ may be
infeasible, good, or bad. We denote the subsets of good and bad
traces in Nτ by N g

τ and N b
τ , respectively. We call N b

τ and N g
τ the

bad and good neighbourhoods of τ .
Note that Nτ corresponds to a partial order (events(τ),v),

with ei v ej iff ei<τej and pid(ei) = pid(ej). However,N g
τ and

N b
τ do not, in general, correspond to a partial order (cf. the exact

representation ofN g
τ in Fig. 1).

Representing subsets of trace neighbourhoods. We represent
subsets of trace neighbourhoods using happens-before formulas, or,
HB-formulas. An HB-formula ϕ for a trace τ is either a: (a) basic
constraint of the form hb(ei, ej) where ei, ej ∈ events(τ); or
(b) a Boolean combination of HB-formulas, i.e., one of ϕ1 ∧ ϕ2,
ϕ1 ∨ ϕ2, or ¬ϕ1 where ϕ1 and ϕ2 are HB-formulas.

The semantics [[ϕ]] of an HB-formula ϕ for a trace τ is subset
of Nτ , defined as follows: (a) for a basic constraint hb(ei, ej),
we have that [[hb(ei, ej)]] = {σ ∈ Nτ | ei <σ ej}; and (b) for
Boolean combinations, we have that [[ϕ1 ∧ ϕ2]] = [[ϕ1]] ∩ [[ϕ2]],
[[ϕ1 ∨ ϕ2]] = [[ϕ1]] ∩ [[ϕ2]], and [[¬ϕ1]] = Nτ \ [[ϕ1]], respectively.

Remark 2.1. Our HB-formulas only represent constraints on
scheduling. One could define more expressive constraints which in-
clude constraints not just on scheduling, but also on variable val-
uations in individual executions. However, our hypothesis is that
happens-before constraints on scheduling are sufficient to express
many interesting properties of traces and executions. This is also



supported by empirical data that shows that most concurrency bugs
are due to bad ordering of instructions in a trace rather than the
interaction between schedules and variable valuations [29].

2.3 Computing Good and Bad Neighbourhoods
In this section, we present an algorithm for computing an exact
representation for the bad neighbourhood of a trace. However,
as this representation may be unwieldy and complex, we further
provide an algorithm to produce sound overapproximations of N b

τ

and N g
τ , i.e., to find succinct HB-formulas ϕG and ϕB such that

N g
τ ⊆ [[ϕG]],N b

τ ⊆ [[ϕB ]], and [[ϕG]] ∩N b
τ = [[ϕB ]] ∩N g

τ = ∅.
Encoding bad executions. Given a trace τ , our algorithm is based
on constructing a quantifier free first-order formula that represents
all bad executions in L(Nτ ). We use the concurrent trace program
encoding [41] which is based on a concurrent single static assign-
ment (CSSA) form of traces. We recall the encoding below to make
the presentation self-contained. We present the encoding for the
case where instructions are expressed as guarded actions; the case
where instructions are expressed as transition predicates is similar.
Given a trace τ , we first rewrite it into the CSSA form.
• For each variable v, we introduce a unique name vw,e for each

event e that may change the value of v (here, w stands for
“write”). Further, for each variable v, we introduce a unique
name vι to represent the value of v at the start of an execution.
• For each event e that reads a variable v, we replace v as follows:

If v is a local variable, we replace v by vw,e′ where e′ is
the most recent event from the thread that writes to v; and
If v is a shared variable, we replace v by vr,e (where r

stands for “read”) and we store an additional constraint,
where vr,e = π(vι, vw,e1 , vw,e2,, . . . , vw,e`) where ei
ranges over all events from other threads that write to v and
the most recent event from the same thread that writes to v.

The π-functions above are analogous to the φ-functions used to
express joins in sequential single static assignment encodings,
i.e., vr,e = π(vι, vw,e1 , . . . , vw,e`) expresses that e reads either
the initial value of v, or the value written by one of e1, . . . , e`.
• Further, for each event e, we define the condition that e is

feasibly reached. If e is the first event in a thread, we set
cond(e) = true. Otherwise, cond(e) depends on the previous
event from the same thread in τ (say e′). If e′ is an assertion,
we let cond(e) = cond(e′). Otherwise, e′ is a guarded action
assume(G)→ assign, and we let cond(e) = cond(e′) ∧G.

Example 2.2. In the running example from Fig. 1, the statement
TW[1] : temp := balance; would be encoded as tempw,TW[1] =
balancer,TW[1] ∧ balancer,TW[1] = π(balanceι, balancew,TD[2]).

Given a trace τ rewritten in the CSSA form, the following
constraints encode executions in the neighbourhoodNτ of τ :
• Thread orders. In any execution in the neighbourhood of τ , the

order of events in each thread is the same as in the trace τ . We
define ΦPO =

∧
{hb(ei, ej) | pid(ei) = pid(ej)∧ ei <τ ej}.

• Variable assignments. This part of the encoding is a di-
rect translation of the assignments in each event into con-
straints. We have ΦVD =

∧
e

∧m
i=1 v

i
w,e = expri, where e

ranges over events of the form T[`] : stmt with stmt being
assume(G)→ v1w,e, . . . , v

m
w,e := expr1, . . . , exprm.

• π-constraints. Each π-constraint chooses a value for a read
of a shared variable from possible writes. Formally, each con-
dition vr,e = π(vι, vw,e1 , . . . , vw,e`) is rewritten as [vr,e =

vι∧
∧
i hb(e, ei)]∨

∨`
i=1[vr,e = vw,ei∧cond(ei)∧hb(ei, e)∧∧

j 6=i(hb(ej , ei) ∨ hb(e, ej))]. Intuitively, the above formula
states that: (a) the value of v read by e is either the ini-
tial value of v or written by one of e1, . . . , e`; (b) if the
value is the initial value, all ei happen after e; and (c) if the
value is written by ei, then ei is feasibly reached and all con-

flicting writes either happen before ei or after e. We denote
by ΦPI the conjunction of all such π-constraints. For exam-
ple, for the π-function from Example 2.2, the corresponding
constraint is (balancer,TW[1] = balanceι ∧ hb(TW[1], TD[2])) ∨
(balancer,TW[1] = balancew,TD[2] ∧ hb(TD[2], TW[1])).
• Correctness condition. For correctness, if an assertion event
e = T[`] : assert(Ge) is feasibly reached, then Ge must hold.
Hence, the correctness condition is ΦCOR =

∧
e(cond(e) ⇒

Ge) where e ranges over assertion events.
The final encoding for bad executions is given by ΦCTP (τ) =
ΦPO ∧ΦVD ∧ΦPI ∧¬ΦCOR. We also encode the complementary
correctness condition as ΦCTP (τ) = ΦPO ∧ΦVD ∧ΦPI ∧ΦCOR.

For convenience, we use an auxilliary formula ΦFEA to rep-
resent the condition that each assumption must hold. We have
ΦFEA =

∧
e cond(e) where e ranges over all events.

An execution π corresponds to a model V of ΦCTP if: (a) the
value of each vι in V is the initial value of v in π; (b) the value of
each vr,e in V is the value of v read by e in π; (c) the value of each
vw,e in V is the value of v written by e in π; and (d) the value of
hb(ei, ej) in V is true if and only if ei occurs before ej in π.

Theorem 2.3 ([41]). Given a trace τ , (a) for every model V
of ΦCTP (τ) there is a bad execution π ∈ L(N b

τ ) such that π
corresponds to V; and (b) for every π ∈ L(N b

τ ) there is a model
V of ΦCTP (τ) such that π corresponds to V .

Bad neighbourhood computation. Armed with ΦCTP — an SMT
encoding of bad executions in the neighbourhood of a trace τ —
we now present an algorithm to compute a representation of N b

τ .
Algo. 1 proceeds by repeatedly computing satisfying assignments
to ΦCTP using an SMT solver (lines 2 and 3), and accumulating
the HB-formulas in the models (lines 4 and 5). We conjoin ΦCTP

with additional constraints to ensure that the same satisfying as-
signments are not returned each time.

Algorithm 1 Computing the bad neighbourhood of a trace
Require: Trace τ
Ensure: HB-formula ϕB such thatN b

τ = [[ϕB ]].
1: Φ← ΦCTP (τ); ϕB ← false
2: while Φ ∧ ¬ϕB is satisfiable do
3: V ← satisfying assignment for Φ ∧ ¬ϕB
4: ϕ′B ←

∧
{hb(e, e′) | V |= hb(e, e′)}

5: ϕB ← ϕB ∨ ϕ′B
6: return ϕB

Overapproximating bad neighbourhoods. While Algo. 1 com-
putes an exact representation of N b

τ , it is inefficient in practice.
Hence, we forgo the goal of an exact representation. Instead, we
compute a sound overapproximation of N b

τ , which may include
infeasible traces, but not good traces. Given trace τ , Algo. 2 com-
putes sound overapproximations of N b

τ and N g
τ . Algo. 2 performs

several optimizations with respect to Algo. 1 to accumulate weaker
constraints from each model of ΦCTP , i.e., Algo. 2 attempts to ac-
cumulate larger subsets ofNτ into ϕB in each iteration.
• Data-flow analysis. From the model V of ΦCTP (τ), the data-

flow analysis retains those happens-before constraints (ϕ′B) that
are necessary to preserve the data-flow into the failing assertion
in the corresponding execution. We use the function DFV(e)
(line 5) to compute constraints that ensure e can be feasibly
reached and can read the same variable values as in V . Given
the execution corresponding to V , let reads(e), readsG(e),
and srcEvent(v, e) represent the variables read by e, the vari-
ables read by e in the guard (if e is not a guarded assignment,
readsG(e) = ∅), and the event that writes the value of v read
by e. We have DFV(e) = DF 1

V(e) ∪DF 2
V(e) where:



we let DF 1
V(e) =

⋃
v∈reads(e)

[
{(v, srcEvent(v, e), e)}

∪DFV(srcEvent(v, e))
]
; and

DF 2
V(e) =

⋃
e′∈E,v∈readsG(e′)

[
{(v, srcEvent(v, e′), e′)}

∪ DFV(srcEvent(v, e′))
]

where event e′ ranges over
E = {e′ | pid(e) = pid(e′) ∧ V |= hb(e′, e)}.

Intuitively, DF 1
V ensures that e can read the same values as

in V and DF 2
V ensures that e is feasibly reached. We then

get additional constraints ADF necessary to ensure conflicting
writes do not affect the data-flow into the assertion (line 6).
• Unsatisfiable core computation. Next, we perform two

rounds of generalization on ϕB′ through unsatisfiable core
computation. In the first round, we construct a formula ϕB′ ∧
Choices(V) ∧ ΦCTP (τ) where Choices(V) fixes the initial
variable values to the ones from V (line 9). A satisfying as-
signment to this formula models executions where no fail-
ing assertion is feasibly reached. Therefore, if the formula
is unsatisfiable, the happens-before constraints from the un-
satisfiable core (line 11) ensure that all executions satisfying
Choices(V) are bad. Note that if all instructions are determin-
istic, the above formula is always unsatisfiable. In the second
round (line 13), we follow a similar procedure, but with the for-
mula ϕB′ ∧ ΦFEA ∧ ΦCTP . Here, a model is a good execution
and hence, the constraints from the unsatisfiable core (line 13)
ensure that any feasible execution is necessarily bad.
Roughly, the first round allows us to generalize the HB-
formula in the case of data-dependent bugs. The second round
lets us generalize further in the case of data-independent bugs.

The sound overapproximation, ϕG, of N g
τ is obtained by comple-

menting ϕB (line 15). Note that ϕB returned is in disjunctive nor-
mal form (DNF), while ϕG is in conjunctive normal form (CNF).

Algorithm 2 Computing sound overapproximations of the bad and
good neighbourhoods of a trace
Require: Trace τ
Ensure: HB-formulas (ϕB , ϕG) such that N g

τ ⊆ [[ϕG]], N b
τ ⊆

[[ϕB ]], and [[ϕG]] ∩ [[ϕB ]] = ∅.
1: Φ← ΦCTP (τ); ϕB ← false
2: while Φ ∧ ¬ϕB is satisfiable do
3: V ← satisfying assignment for Φ ∧ ¬ϕB
4: {Data-flow analysis}
5: DF ← DFV(e∗) where e∗ is the failing assertion in V
6: ADF ←

⋃
(v,ei,ej)∈DF

⋃
{ek|ek writes v}

(
{(v, ek, ei) |

V |= hb(ek, ei)} ∪ {(v, ej , ek) | V |= hb(ej , ek)}
)

7: ϕB′ ←
∧

(v,ei,ej)∈DF∪ADF hb(ei, ej)

8: {Unsat-core computation}
9: Choices(V)←

∧
v∈V vι = V[vι]

10: if ϕB′ ∧ Choices(V) ∧ ΦCTP (τ)) is unsatisfiable then
11: ϕB′ ← MinUNSATCore(Soft← ϕB′ ,

Hard← Choices(V) ∧ ΦCTP (τ))
12: if ϕB′ ∧ ΦFEA(τ) ∧ ΦCTP (τ)) is unsatisfiable then
13: ϕB′ ← MinUNSATCore(Soft← ϕB′ ,

Hard← ΦFEA(τ) ∧ ΦCTP (τ))
14: ϕB ← ϕB ∨ ϕB′

15: ϕG ← ¬ϕB ; return (ϕB , ϕG)

Theorem 2.4. For a trace τ , if Algo. 2 returns (ϕB , ϕG), then
N b
τ ⊆ [[ϕB ]],N g

τ ⊆ [[ϕG]], and [[ϕG]] ∩N b
τ = [[ϕB ]] ∩N g

τ = ∅.

2.4 Implementation and Evaluation
We have implemented Algorithms 1 and 2 in a tool TARA (accessi-
ble at https://github.com/thorstent/TARA). TARA consists
of 4000 lines of C++ code and uses Z3 [15] to discharge SMT

queries. We use a new input format, CTRC, for specifying traces.
The CTRC format consists of global and thread-local variables
along with types and any initial valuations, and the instructions (in
SMT-LIB format) in each thread. This makes TARA independent
and easy to use with any front-end that can translate instructions to
the SMT-LIB syntax. We use a modified version of CONREPAIR [9]
to generate CTRC files for bad traces. CONREPAIR, in turn, uses
CBMC [11] to find bad traces in programs and CPACHECKER [5]
to translate C statements into the SMT-LIB format.

TARA has a number of different output options. Algo. 1 gener-
ates an HB-formula in DNF, which is often large. Algo. 2 gener-
ates a succinct HB-formula in DNF, the sizes of whose disjuncts
are locally minimized. In our experience, the unsat core provided
by Z3 is often far from minimal. Hence, we first use Z3 to compute
an unsat core and then use a custom minimization technique—we
use Z3 incrementally with triggers to activate and deactivate ex-
pressions for unsat core minimization. TARA can also generate an
HB-formula in CNF representing bad neighbourhoods. However,
this is computationally more expensive.
Experiments. Our benchmarks are from a diverse set of sources,
namely, the concurrency track of the 2014 software verification
competition SV-COMP [3] (suite sv) and the regression-test suites
of CONREPAIR [9] (suite cr) and ESBMC [31] (suite es). We also
use a set of small handmade examples with common bug patterns
(suite hm). The cr suite contains simplifed versions of real buggy
code from the linux kernel. To test the limits of TARA, we use the
loop-x examples that have two threads each executing a loop of
x iterations. For correct behaviour, each iteration should execute
atomically with respect to iterations of the other thread. However,
the locks required to ensure this are missing.

We ran our experiments on a laptop with a 4-core Core i5 CPU
and 8GB of RAM running Linux. Our results are presented in Ta-
ble 1. The time reported only includes the time taken by TARA,
and not the time needed to find a bad trace in the benchmark pro-
gram. The #Threads/#Instrs column in Table 1 indicates the com-
plexity of the benchmarks in terms of the number of threads and
instructions. The performance of SMT queries involving ΦCTP is
mostly influenced by the number and size of π-functions. The #π-
functions/#Disjuncts column indicates the number of π-functions
and average number of arguments per π-function.

The performance of TARA using Algo. 1 and Algo. 2 are in
columns marked Algo.1 and Algo.2, respectively. For each algo-
rithm, we report the number of iterations, the total time taken and
the size of the generated ϕB (as the number of disjuncts and the
average number of terms in each disjunct). Algo. 1 times out af-
ter 10 minutes in many cases—in such cases, we report the num-
ber of loop iterations completed before the timeout. With Algo. 2,
TARA terminates within 5 seconds for each benchmark. This time
is negligible compared to the time taken to find the initial coun-
terexample trace. For example, CBMC took 2 minutes to find the
trace usb-serial-1, while our analysis completed exploration of
its bad neighbourhood in 2 seconds. We tested the limits of our tool
in the loop-x examples. With 32 iterations per thread, we exceeded
the timeout and hit the limit of our current implementation.

3. Case Study: Synchronization Synthesis
In our first case study, we use the representation of a sound over-
approximation of the good neighbourhood of a trace τ (returned as
ϕG by Algo. 2) to synthesize synchronization that eliminates the
bad neighbourhood of τ . Missing synchronization primitives such
as locks, barriers, and wait-notify statements present themselves
as easily identifiable HB-formula patterns in ϕG. Our procedure
derives the required synchronization using rules that rewrite such
patterns into the corresponding primitives.

https://github.com/thorstent/TARA


Table 1 Experiments: ϕB generation
Iterations Total time Size of ϕB

Name Suite #Threads/#Instrs #π-functions/#Disjuncts Algo.1 Algo.2 Algo.1 Algo.2 Algo.1 Algo.2
reorder 2 sv 2/3 2/2.0 1 1 18ms 28ms 1/2.0 1/2.0
define use cr 2/4 2/2.0 1 1 15ms 22ms 1/2.0 1/1.0
em28xx cr 2/8 4/2.0 1 1 16ms 25ms 1/2.0 1/1.0
locks es 3/8 10/1.6 12 2 27ms 37ms 12/5.5 2/4.0
2stage hm 2/8 5/1.4 8 1 26ms 32ms 8/3.8 1/2.0
drbd receiver cr 2/9 5/1.6 40 1 42ms 28ms 40/3.9 1/1.0
md cr 3/11 4/1.8 40 1 76ms 33ms 40/6.1 1/1.0
lazy01 sv 3/12 6/3.7 2 2 31ms 57ms 2/3.0 2/2.0
locks hb hm 4/13 10/2.2 >29.0k 7 TO 119ms TO 6/3.0
lc rc cr 4/14 8/2.0 4.6k 1 21.4s 37ms 4.6k/16.7 1/1.0
barrier locks hm 3/18 17/2.6 10.6k 6 1.4min 521ms 10.6k/10.0 4/1.5
stateful01 sv 3/19 10/3.4 2.3k 2 10.5s 84ms 2.3k/9.4 2/1.0
read write lock sv 4/22 16/3.4 9.2k 4 1.6min 319ms 9.2k/16.1 4/3.0
loop hm 2/38 14/2.7 2 1 38ms 72ms 2/3.0 1/2.0
fib bench sv 3/39 24/3.6 >20.5k 2 TO 2.3s TO 2/10.0
i2c hid cr 2/42 26/4.5 >23.4k 3 TO 615ms TO 3/1.3
rtl8169-1 cr 7/71 22/2.7 >20.4k 1 TO 111ms TO 1/2.0
rtl8169-2 cr 7/116 41/2.3 >7.3k 1 TO 463ms TO 1/1.0
rtl8169-5 cr 7/134 48/3.1 >5.5k 1 TO 1.5s TO 1/1.0
rtl8169-4 cr 7/142 48/3.0 >8.4k 9 TO 3.8s TO 2/1.0
rtl8169-6 cr 7/144 52/2.9 >8.1k 1 TO 887ms TO 1/1.0
usb serial-1 cr 7/151 87/3.7 >5.5k 1 TO 1.9s TO 1/1.0
usb serial-2 cr 7/163 93/3.6 >4.4k 3 TO 4.4s TO 1/1.0
rtl8169-3 cr 8/174 61/3.6 >4.2k 2 TO 2.7s TO 1/1.0
usb serial-3 cr 7/178 100/3.7 >4.3k 1 TO 2.1s TO 1/1.0
loop-2 N/A 2/16 8/3.0 >4.0k 4 11.6s 135ms 4.0k/8.9 4/2.0
loop-4 N/A 2/32 16/5.0 >24.6k 8 TO 309ms TO 8/2.0
loop-8 N/A 2/64 32/9.0 >15.3k 16 TO 3s TO 16/2.0
loop-16 N/A 2/128 64/17.0 >4.4k 32 TO 1.1min TO 32/2.0
loop-32 N/A 2/256 128/33.0 >674 64 TO 35.5min TO 64/2.0

Synchronization primitives. We first describe various synchro-
nization primitives that we derive. Recall from Sec. 2 that we use
the notation T[`] to refer to events labelled with T[`], and the nota-
tions T[` : `′] and T[L] to refer to corresponding event sequences.
1. Wait-Notify. A wait-notify WaitNotify

(
T2[`2], T1[`1]

)
denotes

a wait to make T2[`2] wait for T1[`1] to complete, and a notify
to make T1[`1] signal T2[`2] upon completion.

2. Locks. A lock Lk
(
T1[L1], . . . , Tn[Ln]

)
denotes a common lock

protecting each event sequence Ti[Li], i ∈ [1, n], to ensure that
these event sequences cannot execute concurrently.

3. Barriers. A barrier Barrier
(
T1[`1], . . . , Tn[`n]

)
at location `i

of thread Ti, i ∈ [1, n], prevents each thread Ti from proceed-
ing beyond `i until every other thread Tj reaches `j. In other
words, Ti cannot execute the event at `i until every other Tj
executes the event at `j − 1.

4. Shared-exclusive locks. A shared-exclusive lock (or, a
readers-writers lock) ShExLock

(
Sh :Ts1[Ls1], . . . , Tsn[Lsn],

Ex :Tx1[Lx1], . . . , Txm[Lxm]
)

permits concurrent execution of
all event sequences Tsi[Lsi], i ∈ [1, n], while preventing
concurrent execution of (a) any two Txi[Lxi] and Txj[Lxj] with
i 6= j, and (b) any Txi[Lxi] and Tsj[Lsj].

Rewriting ϕG to derive synchronization. During the rewrite pro-
cess below, we use disjunctive formulae (denoted by ψ) where
each disjunct is either an atomic hb-constraint of the form
hb(Ti[`i], Tj[`j]), or a synchronization primitive. For a trace τ ,
we repeatedly apply the rewrite rules from Fig. 2 on ϕG (in
CNF, as returned from Algo. 2) until no more rules are appli-
cable. The ADD.WAITNOTIFY, ADD.LOCK and ADD.BARRIER
rules introduce the wait-notify, locks, and barrier primitives. The
MERGE.LOCKS rule merges locks across pairs of threads, while
the MERGE.LOCKS.DEADLOCKS rule merges locks that can po-
tentially lead to deadlocks. The MULTITHREAD.LOCK and MUL-

TITHREAD.BARRIER rules inductively derive locks and barriers
spanning multiple threads. The ADD.SHAREDEXCLUSIVELOCK
rule derives a shared exclusive lock from already inferred locks.
Since ϕG, as generated by Algo. 2, is already optimized, we do not
merge WaitNotify primitives.

We explain two of the above rules here. The premise of the
ADD.LOCK rule asks for two event sequences T1[`1 : `′1] and
T2[`2 : `′2] such that one of them has to finish execution before
the other starts, i.e., hb(T1[`′1], T2[`2]) ∨ hb(T2[`′2], T1[`1]). Equiv-
alently, the two event sequences do not execute concurrently. This
is enforced by the lock Lk

(
T1[`1 : `′1], T2[`2 : `′2]

)
. The premise of

the MERGE.LOCKS.DEADLOCKS rule looks for two already de-
rived locks, acquired by two threads in different orders (which may
lead to a deadlock), and merges these locks into one.

Note that the rewriting process always terminates. However, de-
pending on the order of rules applied, we may obtain different for-
mulae. Upon termination, we get a CNF formula over synchroniza-
tion primitives. We pick a set S of synchronization primitives, con-
sisting of one primitive from each conjunct. Let PS be the program
obtained by inserting each synchronization primitive in S into the
corresponding position in the original concurrent program P .

Theorem 3.1 (Soundness of rewrite rules). Given a trace τ , letPS
be obtained as described above. Let π ∈ L(Nτ ) be a deadlock-free
execution of PS . Then π 6∈ L(N b

τ ), i.e., π is not bad.

While PS is not guaranteed deadlock-free, we perform simple
consistency checks when choosing S to prevent obvious deadlocks.
For example, we ensure that WaitNotify primitives in S do not
introduce ordering cycles over events(τ).

Note that our rewrite rules are by no means complete. It may
be possible to derive the above synchronization primitives using
different rules that represent other scenarios. Further, our rewrite



Figure 2 Rewrite rules for synchronization synthesis
hb(T1[`′1], T2[`2]) ∨ hb(T2[`′2], T1[`1]) ∨ ψ `1 ≤ `′1 `2 ≤ `′2

Lk
(
T1[`1 : `′1], T2[`2 : `′2]

)
∨ ψ

ADD.LOCK
hb(T1[`1], T2[`2]) ∨ ψ

WaitNotify
(
T2[`2], T1[`1]

)
∨ ψ

ADD.WAITNOTIFY

(
hb(T1[`1 − 1], T2[`2]) ∨ ψ

)
∧
(
hb(T2[`2 − 1], T1[`1]) ∨ ψ

)
Barrier

(
T1[`1], T2[`2]

)
∨ ψ

ADD.BARRIER

(
Lk
(
T1[L1], .., Tn[Ln]

)
∨ ψ
)
∧
∧n
i=1 Lk

(
Ti[Li], Tn+1[Ln+1]

)
∨ ψ

Lk
(
T1[L1], .., Tn[Ln+1]

)
∨ ψ

MULTITHREAD.LOCK

(
Lk
(
T1[L1], T2[L2]

)
∨ ψ
)
∧
(
Lk
(
T1[L1′], T2[L2′]

)
∨ ψ
)

T1[L1′] ⊆ T1[L1] T2[L2′] ⊆ T2[L2]

Lk
(
T1[L1], T2[L2]

)
∨ ψ

MERGE.LOCKS

(
Lk
(
T1[`a1, `

a′
1 ], T2[`a2, `

a′
2 ]
)
∨ ψ
)
∧
(
Lk
(
T1[`b1, `

b′
1 ], T2[`b2, `

b′
2 ]
)
∨ ψ
)

`a1 ≤ `b1 ≤ `a
′

1 `b2 ≤ `a2 ≤ `b
′

2

Lk
(
T1[`a1,max(`a

′
1 , `

b′
1 )]], T2[`b2,max(`b

′
2 , `

a′
2 )]
)
∨ ψ

MERGE.LOCKS.DEADLOCKS

(
Barrier

(
T1[`1], . . . , Tn[`n]

)
∨ ψ
)
∧
∧n
i=1

(
Barrier

(
Ti[`i], Tn+1[`n+1]

)
∨ ψ
)

Barrier
(
T1[`1], . . . , Tn+1[`n+1]

)
∨ ψ

MULTITHREAD.BARRIER

∧n
i=1

∧m
j=1

(
Lk
(
Tsi [Lsi ], Txj [Lxj ]

)
∨ ψ
) ∧m

i=1

∧m
j=1

(
Lk
(
Txi [Lxi ], Txj [Lxj ]

)
∨ ψ
)

ShExLock
(
Sh :Ts1 [Ls1 ], . . . , Tsn [Lsn ], Ex :Tx1 [Lx2 ], . . . , Txm [Lxm ]

)
∨ ψ

ADD.SHAREDEXCLUSIVELOCK

system can also be extended to other synchronization primitives.
We now present examples illustrating the application of our rules.

Example 3.2. For the example trace shown in Fig. 1, ϕG is given
by hb(TD[2], TW[1]) ∨ hb(TW[2], TD[1]). Applying the ADD.LOCK
rewrite rule yields Lk

(
TW[1 : 2], TD[1 : 2]

)
.

Example 3.3. For the example trace shown in Fig. 3(a), ϕG is
given by (hb(TF[4], TS[3]) ∨ hb(TS[4], TF[3])) ∧ hb(TS[4], TF[5]) ∧
hb(TF[4], TS[5]). Applying the ADD.LOCK rewrite rule yields:
Lk
(
TF[3 : 4], TS[3 : 4]

)
∧ hb(TS[4], TF[5]) ∧ hb(TF[4], TS[5]). Ap-

plying the ADD.BARRIER rule yields: Lk
(
TF[3 : 4], TS[3 : 4]

)
∧

Barrier
(
TF[5], TS[5]

)
.

Example 3.4. For the example trace shown in Fig. 3(b), ϕG is as
shown. The disjuncts ψ1 and ψ2 are not relevant for this example
except for the fact that ψ1 is common to the 3rd and 4th conjuncts,
ψ2 is common to the 5th and 6th conjuncts and ψ1 6= ψ2.
• Applying ADD.LOCK yields: hb(TI[2], TF[2]) ∧ hb(TI[2],
TS[2]) ∧ (Lk

(
TF[4], TS[3 : 4]

)
∨ ψ1) ∧ (Lk

(
TF[3 : 4], TS[4]

)
∨

ψ1)∧ (Lk
(
TF[4], TS[3 : 4]

)
∨ψ2)∧ (Lk

(
TF[3 : 4], TS[4]

)
∨ψ2).

• Applying MERGE.LOCKS next yields: hb(TI[2], TF[2])
∧ hb(TI[2], TS[2]) ∧ (Lk

(
TF[3 : 4], TS[3 : 4]

)
∨ ψ1) ∧

(Lk
(
TF[3 : 4], TS[3 : 4]

)
∨ ψ2).

• Finally, applying the ADD.WAITNOTIFY rule yields:
WaitNotify

(
TF[2], TI[2]

)
∧ WaitNotify

(
TS[2], TI[2]

)
∧

(Lk
(
TF[3 : 4], TS[3 : 4]

)
∨ψ1)∧(Lk

(
TF[3 : 4], TS[3 : 4]

)
∨ψ2).

Note that the MERGE.LOCKS rule does not apply to the
last two conjuncts as ψ1 6= ψ2. One possible solution
for S is {WaitNotify

(
TF[2], TI[2]

)
, WaitNotify

(
TS[2], TI[2]

)
,

Lk
(
TF[3 : 4], TS[3 : 4]

)
}.

3.1 Experiments
We implemented the above procedure as an extension to TARA.
Given a trace τ , TARA supports synchronization synthesis as
an optional step after generating succinct representations of N g

τ

and N b
τ . The implementation first attempts to apply the rules

ADD.BARRIER, ADD.LOCK and ADD.WAITNOTIFY (in that or-
der). Then, the merging rules are applied, first merging locks across
thread pairs, and then merging barriers and locks spanning multiple
threads. We report the results of synchronization synthesis experi-

ments in Table 2. In each case, we report the numbers of locks (#L),
barriers (#B) and wait-notify (#WN) primitives synthesized. The
synthesized synchronization matched our (human) intuition about
the repairs needed. Since TARA generates fairly small ϕG formu-
lae, the synthesis takes less than 50 microseconds in every case.

Table 2 Experiments: synchronization synthesis
Name #L #B #WN Name #L #B #WN
reorder 2 1 0 0 loop 1 0 0
define use 0 0 1 fib bench 1 0 0
em28xx 0 0 1 i2c hid 1 0 2
locks 1 0 0 rtl8169-1 0 0 1
2stage 0 0 1 rtl8169-2 0 0 1
drbd receiver 0 0 1 rtl8169-5 0 0 1
md 0 0 1 rtl8169-4 0 0 2
lazy01 0 0 2 rtl8169-6 0 0 1
locks hb 1 0 2 usb serial-1 0 0 1
lc rc 0 0 1 usb serial-2 0 0 1
barrier locks 1 1 0 rtl8169-3 0 0 1
stateful01 0 0 2 usb serial-3 0 0 1
read write lock 4 0 0

4. Case Study: Bug Summarization
In our second case study, we use the representation for a sound
overapproximation of the bad neighbourhood of a trace τ (returned
asϕB by Algo. 2) for counterexample summarization and bug sum-
marization. The HB-formula ϕB encapsulates relevant ordering in-
formation about all counterexamples in the neighbourhood of τ
and can be viewed as a stand-alone counterexample summary. For
instance, in Fig. 3(c), one may view ϕB = hb(TN[2], TP[2]) as a
counterexample summary that indicates a possible order violation.
While such a bug report can already be useful to a human debug-
ger, a cursory examination of the data-flow through the events in
ϕB can enable formulation of a more precise bug summary. To this
end, we present a set of rules to help infer specific bugs such as data
races, define-use order violations and two-stage access bugs.

4.1 Inferring Bug Summaries from ϕB

We assume ϕB is in DNF. Our inference rules are presented in
Fig. 4. For a thread T , a location `, and a global program vari-



Figure 3 Example programs

globals: float value1, value2, value3, value4, sum;
int flag1, flag2;

init: value1 = 1, value2 = 2, value3 = 4,
value4 = 8, sum = 0, flag1 = 0, flag2 = 0;

thread firsthalf:
locals: float temp, localsum;
init: localsum = 0;
TF[1]: localsum := localsum + value1;
TF[2]: localsum := localsum + value2;
TF[3]: temp := sum;
TF[4]: sum := temp + localsum;
TF[5]: value1 := value1/sum;
TF[6]: value2 := value2/sum;
TF[7]: flag1 := 1;

thread secondhalf:
locals: temp, localsum;
init: localsum = 0;
TS[1]: localsum := localsum + value3;
TS[2]: localsum := localsum + value4;
TS[3]: temp := sum;
TS[4]: sum := temp + localsum;
TS[5]: value3 := value3/sum;
TS[6]: value4 := value4/sum;
TS[7]: flag2 := 1;

thread checkresult:
TC[1]: assume (flag1 = 1 and flag2 = 1);
TC[2]: assert (value1 + value2 + value3 + value4 = 1);

ϕG: (hb(TF[4], TS[3]) ∨ hb(TS[4], TF[3])) ∧ hb(TS[4], TF[5]) ∧
hb(TF[4], TS[5])

(a) Normalization. The goal of the program this trace is drawn
from is to normalize a set of values such that their sum computes
to 1. The program consists of three threads. The first and second
thread process one half each of the set of values. Once the first
and second thread run to completion, the third thread checks if the
sum of the normalized values is 1.
globals: pointer hw start;

int registered;
init: registered = 0;

pci thread:
TP[1]: registered := 1;
TP[2]: hw start := &drv hw start;

network thread:
TN[1]: assume (registered 6= 0);
TN[2]: assert (*hw start = drv hw start); /* pointer

dereference */

void drv hw start() {
/* does something */
}

ϕB : hb(TN[2], TP[2])

(c) Network device initializer. This trace is drawn from a sim-
plified snippet of the Linux RealTek 8169 network driver. The
pci thread signals that a network device is registered using
the variable registered and sets hw start to point to the
drv hw start method. The network thread calls drv open
once the network device is registered. The drv open method
dereferences the hw start pointer.

globals: int intrmask, initdone, workqueueitems,
interrupts;

init: intrmask = 0, initdone = 0, workqueueitems = 0,
interrupts = 0;

thread interruptmaskset:
TI[1]: intrmask := 1;
TI[2]: initdone := 1;

thread first irqhandler:
locals: int temp;
TF[1]: assume (intrmask = 1);
TF[2]: assert (initdone = 1);
TF[3]: temp := workqueueitems;
TF[4]: workqueueitems := temp + 1;
TF[5]: interrupts := interrupts + 1;

thread second irqhandler:
locals: int temp;
TS[1]: assume (intrmask = 1);
TS[2]: assert (initdone = 1);
TS[3]: temp := workqueueitems;
TS[4]: workqueueitem := temp + 1;
TS[5]: interrupts := interrupts + 1;

thread checkworkqueue:
TC[1]: assert (workqueueitems ≥ interrupts);

ϕG: hb(TI[2], TF[2]) ∧ hb(TI[2], TS[2])∧
(hb(TS[4], TF[4]) ∨ hb(TF[4], TS[3]) ∨ ψ1) ∧ (hb(TF[4], TS[4]) ∨

hb(TS[4], TF[3]) ∨ ψ1)∧
(hb(TS[4], TF[4]) ∨ hb(TF[4], TS[3]) ∨ ψ2) ∧ (hb(TF[4], TS[4]) ∨

hb(TS[4], TF[3]) ∨ ψ2)

(b) Interrupt handler (simplified snippet of the Linux RealTek
8169 network driver). Once the intrmask variable is set by the
interruptmaskset thread, the hardware starts producing interrupts.
The handling of these interrupts, by the two irqhandler threads, is
correct only if the driver initialization is complete (captured by the
initdone variable). The irqhandlers add items to a workqueue; the
addition of items is modeled using a counter workqueueitems. The
variable interrupts counts the total number of interrupts handled
by the irqhandler threads and the thread checkworkqueue uses
interrupts to check for inconsistencies in the workqueue.

globals: int[] pagetable, memory;
init: pagetable[1] = 5, memory[5] = 10;

thread pagetableaccess:
locals: int loc, data, page;
TP[1]: page := 1;
TP[2]: loc := pagetable[page];
TP[3]: data := memory[loc];
TP[4]: assert (data = 10);

thread datamove:
locals: int page, newloc, loc;
TD[1]: page, newloc := 1, 20;
TD[2]: loc := pagetable[page];
TD[3]: pagetable[page] := newloc;
TD[4]: memory[newloc] := memory[loc];

ϕB : hb(TD[3], TP[2]) ∧ hb(TP[3], TD[4])
(d) Page-table. The pagetableaccess thread reads a memory location
loc from pagetable and reads data from that memory location.
The datamove thread reads the current memory location loc from
pagetable, updates pagetable with a new memory location newloc
and copies the data from the old memory location to the new memory
location.



Figure 4 Inference rules for bug summarizationa

hb(T1[`′1], T2[`2]) ∧ hb(T2[`2], T1[`′′1 ]) ∧ ψ read(T1[`′1], v) write(T1[`′′1 ], v) access(T2[`2], v)

DataRace({T1[`′1], T1[`′′1 ]}, T2[`2])
DATARACE.1

hb(T1[`′1], T2[`
′′
2 ]) ∧ hb(T2[`′2], T1[`′′1 ]) ∧ ψ read(T1[`′1], v) write(T1[`′′1 ], v) read(T2[`′2], v) write(T2[`′′2 ], v)

DataRace({T1[`′1], T1[`′′1 ]}, {T2[`′2], T2[`′′2 ]})
DATARACE.2

hb(T1[`1], T2[`2]) ∧ hb(T2[`2], T1[`′1]) ∧ ψ access(T1[`1], v) access(T2[`2], v) access(T1[`′1], v)

AtomicityViolation(T1[`1 : `′1], T2[`2])
ATOMICITYVIOLATION.1

hb(T1[`1], T2[`′2]) ∧ hb(T2[`2], T1[`′1]) ∧ ψ access(T1[`1], v) access(T2[`2], v) access(T1[`′1], v) access(T2[`′2], v)

AtomicityViolation(T1[`1 : `′1], T2[`2 : `′2])
ATOMICITYVIOLATION.2

hb(T1[`1], T2[`2]) ∧ hb(T2[`′2], T1[`′1]) ∧ ψ write(T1[`1], v) write(T1[`′1], w) read(T2[`2], v) read(T2[`′2], w)

TwoStageAccessBug(T1[`1 : `′1], T2[`2 : `′2])
TWOSTAGEACCESSBUG.1

hb(T1[`1], T2[`2]) ∧ hb(T2[`′2], T1[`′1]) ∧ ψ read(T1[`1], v) read(T1[`′1], w) write(T2[`2], v) write(T2[`′2], w)

TwoStageAccessBug(T1[`1 : `′1], T2[`2 : `′2])
TWOSTAGEACCESSBUG.2

hb(T1[`1], T2[`2]) ∧ ψ read(T1[`1], v) write(T2[`2], v)
∃σ ∈ Nτ : σ |= hb(T1[`1], T2[`2]) ∧ ψ ∧

∧
T[`] write(T[`], v) ∧ T[`] 6= T1[`1]⇒ hb(T1[`1], T[`])

DefineUse(T1[`1], T2[`2])
DEFINEUSE

aIn this figure, `1 < `′1 < `′′1 and `2 < `′2 < `′′2 .

able v, (a) read(T[`], v) denotes that event T[`] reads from
v, (b) write(T[`], v) denotes that event T[`] writes to v, and
(c) access(T[`], v) denotes that event T[`] reads from or writes
to v. In the discussion below, we combine these with ordering
constraints in a natural manner. For example, read(T1[`1], v) →
write(T2[`2], v) says that event T1[`1] happens before T2[`2] and
that read(T1[`1], v) and write(T2[`2], v) hold.
Data races. Recall that in our framework, every instruction is
assumed to execute atomically. This includes statements of the
form v := v + 1, which may execute non-atomically at a low-level.
Hence, to infer data races corresponding to concurrent accesses of a
shared variable v, we need to model statements at a lower level, i.e.,
by separating events into several low-level atomic events. In most
cases, these low-level atomic events either read or write variables,
but not both. For instance, a decomposition of an event e1 with
instruction v := v + 1 is given by e′1; e′′1 , where event e′1 has in-
struction r := v + 1, event e′′1 has instruction v := r, and r is a local
variable modelling a register. In this case, a data race between event
e1 and some other event e2 accessing v in another thread manifests
itself in a trace σ as the ordering pattern e′1 <σ e2 <σ e′′1 . Hence,
the DATARACE.1 rule infers a possible data race between events
labelled T1[l

′
1],T1[l′′1 ], and T2[l2] if the pattern read(T1[l

′
1], v) →

access(T2[l2], v)→ write(T1[l
′′
1 ], v) is found in ϕB .

Further, if e2 is also decomposed into e′2; e′′2 , where e′2 reads
from v and e′′2 writes to v, a data race can manifest in a trace σ
as e1 <σ e′2 ∧ e′1 <σ e2. The DATARACE.2 rule infers a possi-
ble data race between T1[`

′
1], T1[`

′′
1 ] and T2[`

′
2], T2[`

′′
2 ], if the pat-

terns read(T1[`
′
1], v) → write(T2[`

′′
2 ], v) and read(T2[`

′
2], v) →

write(T1[`
′′
1 ], v) is found in the same disjunct of ϕB .

Atomicity violations. The ATOMICITYVIOLATION rules gener-
alize the DATARACE rules. If the data-flow and ordering pattern
access(T1[`1], v) → access(T2[`2], v) → access(T1[`

′
1], v) man-

ifests in ϕB , the first rule infers a possible atomicity violation
of the event sequence T1[`1 : `′1] via event T2[`2]. If the patterns
access(T1[`1], v) → access(T2[`

′
2], v) and access(T2[`2], v) →

access(T1[`
′
1], v) manifest in the same disjunct of ϕB , the sec-

ond rule infers a possible atomicity violation of the event sequence
T1[`1 : `′1] and event sequence T2[`2 : `′2].

Two stage access. The TWOSTAGEACCESSBUG rules capture
two classic scenarios of two-stage access bugs, indicating viola-
tions of some consistency requirement of accesses to v and w.
In particular, the values of v and w read by a thread could be
inconsistent if either of the following patterns manifest in ϕB :
(a) write(T1[`1], v) → read(T2[`2], v) → read(T2[`

′
2], w) →

write(T1[`
′
1], w); or (b) read(T1[`1], v) → write(T2[`2], v) →

write(T2[`
′
2], w)→ read(T1[`

′
1], w).

Define-use ordering. The DEFINEUSE rule infers a specific type
of order violation indicating the use of a variable before it is
defined. Given ϕB in DNF, if the ordering read(T1[`1], v) →
write(T2[`2], v) manifests in a disjunct δ, the rule infers a define-
use order violation if there exists a trace σ ∈ Nτ such that σ
satisfies δ and T1[`1] precedes all events that write to v in σ.

Starting from ϕB given in DNF, we repeatedly apply the infer-
ence rules from Fig. 4 until no more rules are applicable. We report
all inferred bugs as possible violations. Note that our goal here is
only to assist the user in program debugging. Our inference rules
are not complete. We do not claim that our inferred bugs will man-
ifest in the program’s executions, or that they will match a human
debugger’s intuition. We now present examples illustrating the ap-
plication of some of our bug inference rules.

Example 4.1. For the example trace shown in Fig. 1,
ϕB is given by hb(TW[1], TD[2]) ∧ hb(TD[1], TW[2]).
Since read(TW[1], balance), write(TW[2], balance),
read(TD[1], balance) and write(TD[2], balance) hold, we can ap-
ply the DATARACE.2 rule to infer a DataRace(W[1 : 2], Y[1 : 2]).
Note that this bug inference matches the synchronization
Lk
(
TW[1 : 2], TD[1 : 2]

)
synthesized in Example 3.2.

Example 4.2. Consider the example trace shown in Fig. 3(c).
In our encoding, the pointer hw start is modelled as an
integer variable hw that is initially 0 (since hw start
is uninitialized). The pointer dereference in TN[2] is mod-
elled as assert(hw > 0). For this example, ϕB is given by
hb(TN[2], TP[2]). Since read(TN[2], hw) and write(TP[2], hw)
hold, and trace TP[1], TN[1], TN[2], TP[2] satisfies the last premise
of the DEFINEUSE rule, we can apply the rule to infer a define-use
order violation between TN[2] and TP[2].



Example 4.3. For the example trace shown in Fig. 3(d),
ϕB is given by hb(TD[3], TP[2]) ∧ hb(TP[3], TD[4]).
Since write(TD[3], pagetable), write(TD[4],memory),
read(TP[2], pagetable) and read(TP[3],memory) hold,
we can apply the TWOSTAGEACCESSBUG.1 rule to infer
TwoStageAccessBug(TD[3 : 4], TP[2 : 3]).

4.2 Experiments
Given a trace τ , TARA supports bug summarization as an optional
step after generating ϕB . Starting from ϕB in DNF, the implemen-
tation attempts to apply the DATARACE, ATOMICITYVIOLATION,
TWOSTAGEACCESSBUG and DEFINEUSE inference rules (in that
order). Identical bug reports are merged to avoid duplicates.

The experimental results of using our TARA-based bug sum-
marization on our test-suite are presented in Table 3. We report the
numbers of data races (#DR), atomicity violations (#AV), two-stage
access bugs (#2S) and define-use bugs (#DU) inferred. The Human
column in the table presents a classification of the bugs present in
the benchmarks, as reported by an expert user (OV stands for or-
der violation). The last column indicates if TARA’s bug summary
matched the human classification. For the majority of benchmarks,
TARA summarized the bug correctly (Yes). In some cases, TARA
did not infer a bug summary (–). For the usb serial-1 benchmark,
TARA’s bug summary contradicted the human classification. For
each example, the implementation takes at most 12 milliseconds.

Table 3 Experiments: bug summarization

Name #2S #DR #AV #DU Human Bug sum-
mary right?

reorder 2 0 0 0 1 DU Yes
define use 0 0 0 1 DU Yes
em28xx 0 0 0 1 DU Yes
locks 0 2 0 0 DR Yes
2stage 1 0 0 0 2S Yes
drbd receiver 0 0 0 0 OV –
md 0 0 0 1 DU Yes
lazy01 0 0 0 0 OV –
locks hb 0 2 0 2 DR, DU Yes
lc rc 0 0 0 0 OV –
barrier locks 0 2 0 0 DR, OV Yes
stateful01 0 0 0 0 OV –
read write lock 0 0 4 0 AV Yes
hm-loop 0 1 0 0 DR Yes
fib bench 0 0 2 0 AV Yes
i2c hid 0 0 1 0 AV, OV Yes
rtl8169-1 0 0 0 1 DU Yes
rtl8169-2 0 0 0 1 DU Yes
rtl8169-5 0 0 0 0 OV –
rtl8169-4 0 0 0 0 OV –
rtl8169-6 0 0 0 0 OV –
usb serial-1 0 0 0 1 OV No
usb serial-2 0 0 0 0 OV –
rtl8169-3 0 0 0 0 OV –
usb serial-3 0 0 0 0 OV –

5. Case Study: Accelerating CEGAR
In the final case study, we present a procedure for learning predi-
cates for refinement in a CEGAR loop [14], with the help of TARA.
An abstraction-refinement loop proceeds by building an abstract
model of an input program and applying a model-checker on the
abstract model. If the abstract model satisfies the correctness spec-
ification, then the input program is correct. Otherwise, the model-
checker finds an abstract counterexample, i.e., an execution in the
abstract model. The abstraction counterexample is spurious if there

is no concrete execution that corresponds to the abstract counterex-
ample. Given a spurious counterexample, the refinement proce-
dure refines the abstract model. This is done by finding predicates
that inform the abstraction procedure to construct the next abstract
model by adding the relevant details to the current abstract model
such that the spurious counterexample is absent from next abstract
model. The process starts over with the newly refined abstraction.
After a number of iterations, the abstract model may have no more
counterexamples, which proves the correctness of the input pro-
gram. For simpler presentation, we assume that the input program
is correct and all the abstract counterexamples are spurious.

An abstraction-refinement loop often takes many iterations to
find the right set of predicates to prove correctness of the input
program. This usually depends on the design of the refinement
procedure. Many heuristics have been proposed to find the relevant
predicates in fewer iterations (see, for example, [4]). We aim to use
TARA to accelerate the search for the right predicates, i.e., reduce
the number of iterations of a CEGAR loop.

Our refinement procedure takes a concurrent abstract counterex-
ample as input and returns refinement predicates. First, we analyse
the counterexample using TARA and obtain an HB-formula ϕB that
encodes a set of incorrect interleavings. We sample a number of in-
terleavings from ϕB and attempt to compute refinement predicates
that simultaneously remove all the sampled spurious inter-leavings
using a method similar to beautiful interpolants [1].

5.1 Abstraction and Refinement
An abstract model of a concurrent program P =
〈V, {T1, . . . , Tk}, SV, 〈LV1, . . . , LVk〉〉 is another concur-
rent program P̂ = 〈V, {T̂1, . . . , T̂k}, SV, 〈LV1, . . . , LVk〉〉 such
that, for each i ∈ [1, k] and event e in Ti, there is an event ê in T̂i
such that if Γ0eΓ1 is feasible then Γ0êΓ1 is feasible.

In predicate abstraction, the abstract event ê corresponding to
an event e is defined using a set of predicates as follows. Let
us suppose predicates ρ1, . . . , ρm are used for abstraction. Let
i ∈ [1,m]. Let βi be the weakest precondition of e over ρi, and
γi be the weakest precondition of e over ¬ρi. Let β̂i and γ̂i be the
weakest formulas that are Boolean combinations of ρ1, . . . , ρm,
and imply βi and γi, respectively. Γ0êΓ1 is feasible iff ∀i ∈
[1,m] : (Γ0 |= β̂i → Γ1 |= ρi) ∧ (Γ0 |= γ̂i → Γ1 |= ¬ρi).

Let Γ0ê1Γ1 . . . ênΓn be a spurious counterexample, i.e., a trace
in the abstract model that violates the specification. A refinement
procedure computes additional predicates α0, α1, . . . , αn−1, αn
over program variables that satisfy the following constraint.

α0 = true ∧ αn = false ∧
n∧
i=1

αi−1 ∧ ei → α′i

Note that the primed formula α′i is the formula αi where each
variable v is replaced by its primed version v′. Recall that v′

represents the value of v the execution of an instruction. An abstract
model computed using predicates α1, . . . , αn−1 is guaranteed to
not exhibit the spurious counterexample [23].

5.2 Sampling an HB-formula
We pass trace ê1 . . . ên to TARA and obtain an HB-formula ϕB in
DNF to represent bad abstract traces. ϕB is a formula over events
ê1 . . . ên. With slight abuse of notation, we assume that ϕB is a
formula over events e1 . . . en, which can be obtained by replac-
ing abstract events by their corresponding concrete events in ϕB .
We sample a few concrete infeasible traces that satisfy ϕB and try
to compute the simultaneous refinement predicates, i.e., predicates
that eliminate all the sampled traces from the abstract program. In-
tuitively, learning predicates simultaneously using multiple spuri-
ous counterexamples may allow us to find more general predicates.
Both sampling and simultaneous refinement are heuristics choices.



Here, we present one possible choice for the sampling. However,
one can imagine a wide array of heuristics for these choices. In our
sampling heuristic, we search for two disjuncts in ϕB of the form

ϕ1 ∧ ea < eb and ϕ2 ∧ eb < ea
such that negation of any HB-formula in ϕ1 is not in ϕ2. We
generate traces τ1 and τ2 such that (a) they satisfy ϕ1∧ϕ2∧ea <
eb and ϕ1 ∧ ϕ2 ∧ eb < ea respectively; and (b) they are of the
following form with e1k1 = ea and e2k2 = eb.

τ1 = e01 . . . e
0
k0︸ ︷︷ ︸

prefix

e11 . . . e
1
k1︸ ︷︷ ︸
↘

e21 . . . e
2
k2︸ ︷︷ ︸

↙

e31 . . . e
3
k3︸ ︷︷ ︸

suffix

τ2 =
︷ ︸︸ ︷
e01 . . . e

0
k0

︷ ︸︸ ︷
e21 . . . e

2
k2

︷ ︸︸ ︷
e11 . . . e

1
k1

︷ ︸︸ ︷
e31 . . . e

3
k3

If ϕ1 ∧ ϕ2 ∧ ea < eb and ϕ1 ∧ ϕ2 ∧ eb < ea are satisfi-
able, such traces always exist. Both the traces have a common pre-
fix and suffix, and two middle segments e11 . . . e1k1 and e21 . . . e2k2
are swapped. From the traces, we obtain refinement predicates
α1 . . . αk0 , β1 . . . βk1+k2 , γ1 . . . γk1+k2 , and δ1 . . . δk3 by solving
the following constraints.

α0 = true ∧
k0∧
i=1

(αi−1 ∧ e0i → α′i) ∧ αk0 = β0 = γ0 (prefix)

k1∧
i=1

(βi−1 ∧ e1i → β′i) ∧
k1+k2∧
i=k1+1

(βi−1 ∧ e2i−k1 → β′i) (mid trace 1)

k2∧
i=1

(γi−1 ∧ e2i → γ′i) ∧
k2+k1∧
i=k2+1

(γi−1 ∧ e1i−k2 → γ′i) (mid trace 2)

δ0 = βk1+k2 = γk1+k2 ∧
k3∧
i=1

(δi−1 ∧ e3i → δ′i) ∧ δk3 = false

(suffix)
In the above equations, the first and last constraints correspond to
the prefix and suffix respectively. The second and third constraints
correspond to the middle segments of the two traces.

5.3 Constraint Solving for Simultaneous Refinement
We discuss how to solve the above constraints for refinement. The
above constraints are a set of non-recursive Horn clauses. Many
techniques exist to solve such constraints (e.g. [7, 22]). Since we
are aiming for simultaneous refinement, we prefer the solutions
for the unknown predicates to be simple atomic formulas. If an
unknown predicate appears as consequent of multiple implications
(for example, αk0+1), then the solver may naturally give a solution
that is a disjunction of two atomic formulas. We use the method
that is presented in Sec. 4 of [1] for the theory of linear arithmetic
that forces a solver to return solutions for the above constraints with
single atomic formulas if such a solution exists.

Table 4 Experiments: CEGAR acceleration
Example SATABS SATABS[TARA]

Iterations Time(s) Iterations Time(s)
example1 55 35.4 45 33.5
example2 65 45.7 60 47.9
example3 45 23.0 41 23.9

5.4 Experimental Results
We have implemented the above refinement procedure in SA-
TABS [16] and refer to the modified version as SATABS[TARA].
In Table 4 we present the result of running SATABS and
SATABS[TARA] on three hand crafted examples. Each of these ex-
amples contain two threads and 15-20 lines of code. Our method
reduces the number of iterations in all the examples. However, the
total time of verification increases for two examples due to the fact
that our refinement procedure is not well optimized.

6. Related Work
Representations of trace sets. The ΦCTP encoding used in Sec. 2
was introduced in [41], and subsequently generalized in [27, 37].
We may find more applications and variations of our tool TARA
from exploring other suitable happens-before constraint based en-
codings of “interesting” interleavings from the body of predictive
analysis literature (cf. [35, 38]). Concurrent counterexample traces
have been generalized into partial order (Mazurkiewicz) traces
in [8, 9]. As demonstrated in this paper, partial orders may not be
adequate to represent arbitrary trace sets. The work in [20] intro-
duces a new data structure, an inductive data-flow graph (iDFG),
to generalize proofs of programs. While iDFGs is also a represen-
tation of (concurrent) trace sets, it is not clear how one may apply
iDFGs for program debugging or synthesis. In other work, inter-
ference scenarios have been proposed in [19] to represent concur-
rent executions that are behaviourally equivalent under the same in-
put values. For sequential programs, the authors in [2] represent all
counterexamples of recursive programs using pushdown automata.
Synchronization synthesis. In the formal methods and program-
ming languages community, synchronization synthesis of concur-
rent programs has been an active area of research for a long
time [8, 9, 13, 30, 39, 40]. In the past, the approaches in [13, 40]
were based on inferring synchronization by constructing and ex-
ploring the entire product graph or tableaux corresponding to a
concurrent program. Recent approaches infer synchronization in-
crementally from traces [39] or generalizations of bad traces [8, 9].
However, the techniques from [8, 9, 39] infer atomic sections rather
than locks—atomic sections are not directly implementable and
need to be translated into locks either manually, or using other au-
tomated techniques (see, for example, [10]). Jin et al. introduce
CFIX [26], a tool that fixes bugs in concurrent C programs by
matching bug patterns and proposing fixes. However, in their case,
the bug patterns are simple (corresponding to only conjunctions of
happens-before constraints) and hence, cannot infer synchroniza-
tion such as barriers. On the other hand, the CFIX tool is very robust
and practical, and has generated fixes and corresponding patches
for real open-source libraries.
Bug summarization. While there have been various techniques for
fault localization, error explanation, counterexample minimization
and bug summarization for sequential programs, we restrict our
attention to relevant works for concurrent programs. In [28], the
authors focus on shortening counterexamples in message-passing
programs to a set of “crucial events” that are both necessary and
sufficient to reach the bug. In [25], the authors introduce a heuristic
to simplify concurrent error traces by reducing the number of
context-switches. There are several papers that survey and classify
common concurrency bug patterns [18, 29]. We can extend our bug
inference rules using the bug patterns from the papers. Finally, there
is a large body of work on automatic detection of specific bugs such
as data races and atomicity violations [17, 32, 34, 43].
Accelerating CEGAR. There are several works to enhance the
CEGAR loop by finding better predicates, e.g. [4, 36]. In the set-
ting of hardware model-checking (for circuits), Glusman et al. [21]
extend the CEGAR loop by adding several predicates if a spurious
counterexample is found; they generate all counterexamples of the
same length and gather information about valuations crucial to the
incorrectness of the counterexamples. In a similar setting, Wang et
al. [42] improve the CEGAR by introducing a technique to elimi-
nate all spurious counterexamples for an invariant. Sakunkonchak
et al. [33] apply CEGAR optimizations to software model check-
ing and speed up the search for predicates that make the coun-
terexample spurious. However, they do not use interpolants and in-
stead search the counterexample for conflicting predicates. Bjesse
et al. [6] use predicates obtained from CEGAR to guide bounded-
model checking (BMC) and extend its reach.



7. Concluding Remarks
We propose a representation for concurrent trace sets based on HB-
formulas. We present a method and a tool TARA for generating
succinct representations of sound overapproximations of good and
bad neighbourhoods of a trace. We use TARA to successfully drive
three applications in concurrent program reasoning — synchroniza-
tion synthesis, bug summarization and CEGAR. We believe that
our representation and algorithms can significantly boost the appli-
cability and utility of trace-based techniques for concurrency.

While the initial experiments using TARA have been promising,
there are several avenues for future work. We plan to extend TARA
to infer synchronization from traces over different set of events. In
the bug summarization domain, we plan to add a larger class of
bug inference rules. For accelerating CEGAR based verification,
we plan to implement a more efficient refinement procedure and
explore other sampling rules for picking abstract counterexamples.
Acknowledgements. The authors would like to thank Jyotirmoy
Deshmukh, Roderick Bloem, and Bettina Könighofer for enabling
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