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Abstract

We present the first static analysis technique for verifying implementations of cryptographic
protocols based on zero-knowledge proofs. Protocols are implemented in RCF, a core cal-
culus of ML, and cryptographic primitives are considered fully reliable building blocks and
represented symbolically using a sealing mechanism. The statements of the zero-knowledge
proofs are specified in a high-level language and automatically compiled down to a symbolic
implementation using seals. An expressive type system combining refinement, union, and
intersection types allows us to statically characterize the security properties offered by zero-
knowledge proofs and, in general, to extend the scope of type-based analyses of protocol
implementations to important protocol classes not covered so far.

1 Introduction

Proofs of security protocols are known to be error-prone and awkward to make for humans. In
fact, vulnerabilities have accompanied the design of such protocols ever since early authentication
protocols like Needham-Schroeder [28, 41], over carefully designed de-facto standards like SSL
and PKCS [53, 19], up to current widely deployed products like Microsoft Passport [31] and
Kerberos [22]. Hence work towards the automation of such proofs has started soon after the first
protocols were developed, focusing on high-level protocol descriptions (e.g., process calculi [46,
7, 6, 30] and strand spaces [52]) that are suited to the formalization of security properties and
to the automation of security proofs(e.g., see [38, 1, 18, 3, 5, 27, 32, 29, 26]).

Despite this considerable progress on protocol analysis, the verification of security proto-
col implementations is still a widely unexplored field. The aforementioned high-level protocol
descriptions abstract away from most troublesome implementation details, and there is no guar-
antee that a protocol that has been proven secure within an abstract model stays secure when
implemented.

Devising automated techniques for proving the security of protocol implementations is a
highly non-trivial task. First, modern applications such as trusted computing [20] and electronic
voting [24] rely on complex cryptographic primitives, such as zero-knowledge proofs. Auto-
mated verification of such applications requires to symbolically abstract these primitives. Pro-
cess calculi provide convenient mechanisms to define such abstractions, for instance flexible
equational theories [6, 4], which rendered an automated analysis of such applications feasible
in abstract models [11, 9]. This is not the case for standard programming languages, where
one needs to encode these abstractions using the primitives provided by the language. These
primitives, however, were not designed for this purpose, which makes providing encodings that
are suitable for automatic analysis a difficult task.

Second, high-level protocol specifications are typically compact, since many implementation
details are abstracted away, while protocol implementations are much larger. Therefore efficiency
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and scalability of the proposed techniques are (even more) crucial when dealing with industrial-
size applications.

Third, conducting security proofs within abstract protocol models is known to be a difficult
task. Providing security proofs for protocol implementations is typically even more difficult since
they require extensive reasoning about the behavior of programs in the presence of features such
as recursion and state.

1.1 Contributions

We present the first static analysis technique for verifying implementations of security protocols
based on non-interactive zero-knowledge proofs. Protocols are implemented in RCF [13], a
core calculus of ML, and cryptographic primitives are considered fully reliable building blocks
and represented symbolically using a sealing mechanism [40, 50]. The statements of the zero-
knowledge proofs are specified in a high-level language and automatically compiled down to a
symbolic implementation. The verification of the resulting code relies on a type system with
union, intersection, and refinement types. This expressive type system extends the scope of
type-based analyses of protocol implementations to important protocol classes not covered so
far. In particular, we use union and intersection types to provide a precise characterization
of asymmetric cryptography that allows us to verify protocols based on nested cryptography,
signatures of private data, and public-key encryption of authenticated data. The analysis is fully
automated, efficient, compositional, and provides security proofs for an unbounded number of
sessions.

1.2 Related Work

Our type system builds on the work by Bengtson et al. on the type-based analysis of protocol im-
plementations in F# [13]. Their type system supports most of the features of F# by translation
to RCF. The analysis is compositional and promises to scale up to large implementations [15].
Their type system, however, is not expressive enough to deal with zero-knowledge proofs and
poses some serious restrictions even on the usage of standard cryptographic primitives. For
instance, if a key is used to sign a secret message, then the corresponding verification key cannot
be made public. These limitations prevent the analysis of many interesting cryptographic appli-
cations, such the Direct Anonymous Attestation protocol [20], which relies on zero-knowledge
proofs as well as on digital signatures on secret TPM identifiers. We extend this type system
with union and intersection types, which significantly increases the expressiveness of the analysis
and enables the verification of protocols based on zero-knowledge proofs.

Goubault-Larrecq and Parrennes developed a static analysis technique [35] based on pointer
analysis and clause resolution for cryptographic protocols implemented in C. The analysis pro-
vides security proofs and is also useful to find bugs in the implementation, but it is limited to
secrecy properties, it deals only with standard cryptographic primitives, and it does not offer
scalability since the number of generated clauses is very high even on small protocol examples.

Chaki and Datta have recently proposed a technique [23] based on software model checking
for the automated verification of secrecy and authentication properties of protocols implemented
in C. The analysis provides security proofs for a bounded number of sessions and is effective
in discovering attacks. It was used to check secrecy and authentication properties of the SSL
handshake protocol for configurations of up to three servers and three clients. The analysis only
deals with standard cryptographic primitives, and offers only limited scalability.

Bhargavan et al. proposed a technique [17, 16] for the verification of F# protocol implemen-
tations by automatically extracting ProVerif models [18]. The analysis provides security proofs
and, despite its non-compositional nature, scales remarkably well and was successfully used to
verify implementations of real-world cryptographic protocols such as TLS [16]. The considered
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Table 1 Syntax of RCF values and expressions
a, b, c name
x, y, z variable

M,N ::= value
x variable
() unit
λx : T.A function
(M,N) pair
Λα.A polymorphic val.
fold M recursive val.
for eα in eT ; eU do M

A,B ::= expression
M value
M N function application
M〈T 〉 type instantiation
if M = N [as x] then A else B equality check [with type-cast]
let x = A in B let
let (x, y) = M in A pair split
unfold M use recursive value
for eα in eT ; eU do A introduction of intersection types
case x = M in A elimination of union types
(νa l T )A restriction
A � B fork
a!M send M on channel a
a? receive message from a
assume C assumption of formula C
assert C assertion of formula C

Notation: We use square brackets to denote optional parts. Given a phrase of syntax φ, we let φ{M/x} denote the
substitution of each free occurrence of the variable x in φ with the value M . Finally, we use eφ to denote the sequence

φ1, . . . , φn for some n.

fragment of F# is, however, very restrictive: it does not include higher-order functions, and it
allows only for a very limited usage of recursion and state. These restrictions impose serious
limitations on the programming style, and as a consequence the technique can only be used to
analyze protocol implementations developed from scratch.

1.3 Outline

Section 2 introduces RCF, while Section 3 describes the type system we consider. Section 4 illus-
trates our symbolic implementation of asymmetric cryptography and zero-knowledge. Section 5
discusses our encoding of zero-knowledge proofs in RCF and applies it to a simplified version of
the DAA protocol. Section 6 describes our implementation. Section 7 concludes and discusses
future work. The implementation is available at [10].

2 RCF

This section outlines the Refined Concurrent FPC (RCF) [13], a simple programming language
extending the Fixed Point Calculus [36] with refinement types [33, 45, 54] and concurrency [8].
Although very simple, this core calculus is expressive enough to encode a big part of F# [13, 14].
In this paper, we further increase the expressivity of the calculus by adding intersection types [42],
union types, and parametric polymorphism [44, 34].

2.1 Syntax and Informal Semantics

The set of values is composed of variables, the unit value, functions, pairs, and introduction
forms for recursive and polymorphic types (cf. Table 1). Names are generated at run-time and
are only used as channel identifiers, while variables are place-holders for values.

An expression represents a concurrent computation that may reduce to a value (or may
diverge, get “stuck” or deadlock). The reduction relation is defined on computation states con-
sisting of a multiset of expressions being evaluated in parallel; a multiset of messages sent on
channels but not yet received; and a global log containing a multiset of assumed formulas. Our
technique is general and can use different authorization logics for the formulas1. Values are
irreducible. The function application (λx:T.A) M reduces to A{M/x}. A type instantiation

1In our implementation, we consider first-order logic with equality as the authorization logic.

3



Table 2 A direct implementation of a sign-then-encrypt protocol in RCF
(νc l Tchan)
let xb = mkId() in
let sk = mkSK 〈Tsign〉 () in
let vk = mkVK 〈Tsign〉 sk in
let dk = mkDK 〈Tenc〉 () in
let ek = mkEK 〈Tenc〉 dk in
( let y = getPrivString () in

assume Ok(y);
let x = (sign 〈Tsign〉 sk) (xb, y) in
let z = (encrypt 〈Tenc〉 ek) (x, (xb, y)) in
c!z) �

( let z = c? in
let xy = (decrypt 〈Tenc〉 dk) z in
let (x, y) = xy in
let y′ = (check 〈Tsign〉 vk x y) in
let (y1, y2) = y′ in
if y1 = xb then

assert Ok(y2) )

(Λα.A)〈T 〉 reduces to A{T/α}. The conditional if M = N as x then A else B reduces to A{M/x}
if M is syntactically equal to N , and to B otherwise. The variable x is given the intersection of
the types of M and N , which makes the conditional a safe type-cast operator (more details are
given in Section 3.4). The introduction form for intersection types for α̃ in T̃ ; Ũ do A reduces
to A, while the elimination form for union types case x = M in A reduces to A{M/x} (more
details about intersection and union types are given in Section 3). Intuitively, the restriction
(νa l T )A generates a globally fresh channel a that can only be used in A. The expression
A � B evaluates A and B in parallel, and returns the result of B (the result of A is discarded).
The expression a!M outputs M on channel a and reduces to the unit value (). The evaluation
of a? blocks until some message M is available on channel a, removes M from the channel, and
then returns M . Expression assume C, where C is a logical formula, adds C to the global log.
The assertion assert C reduces to (). If C is entailed by the multiset S of formulas in the global
log, written as S |= C, we say the assertion succeeds; otherwise, we say the assertion fails.

Definition 2.1 (Safety) A closed expression A is safe if and only if, in all evaluations of A,
all assertions succeed.

When reasoning about implementations of cryptographic protocols, we are interested in the
safety of programs executed in parallel with an arbitrary attacker. This property is called robust
safety.

Definition 2.2 (Opponent and Robust Safety) A closed expression O is an opponent if
and only if O contains no assertions. A closed expression A is robustly safe if and only if the
application O A is safe for all opponents O.
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Table 3 Syntax of Types
T,U, V ::= > top type

T ∧ U intersection type
T ∨ U union type
unit unit type
{x : T | C} refinement type
x : T → U dependent function type
x : T ∗ U dependent pair type
µα.T iso-recursive type
∀α.T polymorphic type
α type variable

Notations:
T → U , x : T → U and T ∗ U , x : T ∗ U , where in both cases x 6∈ free(U). Let {C} denote
{x : unit | C}, ⊥ denote {false}, and Private denote ⊥ → ⊥.

2.2 Example: Sign-then-Encrypt

We are going to illustrate the calculus, and later the type system, on the following very simple
protocol, in which A first signs and then encrypts a private message for B:

A B

assume Ok(m)

encrypt
( (

sign((m,B),kA) , (m,B)
)
, pk(kB)

)
//

assert Ok(m)

The RCF implementation of this protocol is reported in Table 2. We first generate a fresh public
channel c and B’s identifier xb. We then create the signing and encryption key-pairs. Since the
functions implementing cryptographic primitives are polymorphic, we instantiate them with the
types Tsign and Tenc describing the messages signed and encrypted in this protocol, respectively
(the precise definition of these types will be given in Section 3.5). The sender gets a private
string y from the user and assumes the predicate Ok(y). The sender then signs this message
together with the receiver’s identifier xb, encrypts this signature together with the signed pair
(xb, y), and outputs the resulting ciphertext on channel c.

The receiver reads the message from channel c, decrypts it, splits the pair, and checks the
signature. If all these checks succeed and additionally the second component of the pair is his
own identifier, the receiver asserts Ok(y2), where y2 is bound to the private string sent by A.

3 Type System

This section presents a type system for enforcing authorization policies on RCF code. This
extends the type system proposed by Bengtson et al. [13] with union types, intersection types [42]
and unrestricted parametric polymorphism [44, 34]. This extension enhances the expressivity of
the analysis and, in particular, allows us to obtain a more precise characterization of asymmetric
cryptography and to provide a faithful encoding of zero-knowledge proofs.

3.1 Types

The syntax of types is reported in Table 3. Our type system has a top type > that is supertype
of all the others (the subtyping relation is introduced in Section 3.3). A value is given the
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Table 4 Entailment E |= C

Derive
E ` � free(C) ⊆ dom(E) forms(E) |= C

E |= C

forms(y : {x : T | C}) = {C{y/x}} ∪ forms(y : T )
forms(y : T1 ∧ T2) = forms(y : T1) ∪ forms(y : T2)
forms(y : T1 ∨ T2) = {C1 ∨ C2 | C1 ∈ forms(y : T1), C2 ∈ forms(y : T2)}
forms(E1, E2) = forms(E1) ∪ forms(E2)
forms(E) = ∅, otherwise

intersection type T ∧ U if it has both type T and type U . A value is given a union type T ∨ U
if it has type T or if it has type U , but we do not necessarily know what its precise type is.
As in [13], we use refinement types [33, 45, 54] to associate logical formulas to messages. The
refinement type {x : T | C} describes values M of type T for which the formula C{M/x} is
entailed by the current typing environment. Functions λx : T.A taking as input values of type
T and returning values of type U are given the dependent type x : T → U , where the result
type U can depend on the input value x. Pairs are given dependent types of the form x : T ∗U ,
where the type U of the second component of the pair can depend on the value x of the first
component. The iso-recursive type µα.T is the type of all values fold (M) such thatM is of type
T{µα.T/α}. The polymorphic type [44, 34] ∀α.T (i.e., universal type) describes values Λα.A
such that A{T ′/α} is of type T{T ′/α} for all T ′ .

In the following we explain the typing judgements and present the most important typing
rules. A complete definition of the type system is given in Appendix B.

3.2 Typing Environment and Entailment

A typing environment E is a list containing type variables α, bounded type variables α :: k,
subtyping constraints α <: α′ between type variables, bindings for names a l T , where a stands
for a a channel conveying values of type T , and type bindings for variables x : T .

A crucial judgment in the type system is E |= C, which states that the formula C is derivable
from E. Intuitively, our type system ensures that whenever E |= C we have that C is logically
entailed by the global formula log at execution time. This is used for instance when type-checking
assert C: type-checking succeeds only if C is entailed in the current typing environment. This
judgment is formalized in Table 4. If E binds a variable y to a refinement type {x : T | C}, we
know that the formula C{y/x} is entailed in the system and therefore E |= C{y/x}. In general,
the idea is to inspect each of the type bindings in E and to extract the set of formulas occurring
within refinement types. Notice that for intersection types we take the union of the formulas
occurring in the two types, while for union types we take their component-wise disjunction.

3.3 Subtyping and Kinding

To type-check programs interacting with the attacker, we consider a universal type Un (un-
trusted), which is the type of data possibly known to the attacker . For instance, all data sent
to and received from an untrusted channel have type Un, since such channels are considered
under the complete control of the adversary.
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However, a system in which only data of type Un can be communicated over the untrusted
network would be too restrictive, e.g., a value of type {x : Un | Ok(x)} could not be sent over the
network. We therefore consider a subtyping relation on types, which allows a term of a subtype
to be used in all contexts that require a term of a supertype. This preorder is most often used
to compare types with type Un. In particular, we allow values having type T that is a subtype
of Un, denoted T <: Un, to be sent over the untrusted network, and we say that the type T
has kind public in this case. Similarly, we allow values of type Un that are received from the
untrusted network to be used as values of type U , provided that Un <: U , and in this case we
say that type U has kind tainted. In the following, we outline some important rules for kinding
and subtyping.

Refinement types. The refinement type {x : T | C} is subtype of T . This allows us to discard
logical formulas when they are not needed. For instance, a value of type {x : Un | Ok(x)}
can be sent on a channel of type Un. Conversely, the type T is a subtype of {x : T | C}
only if ∀x.C is entailed in the current typing environment. In our type system, we introduce
an additional property for refinement types, i.e., {x : T | C} is subtype of any other type in
an environment in which ∀x.¬C holds: Intuitively, the type {x : T | C} is not populated in
an environment entailing ∀x.¬C, unless the environment is inconsistent in which case all types
become equivalent by subtyping. By relying on this property, we define the bottom type ⊥ as
{x : Un | false}. By the transitivity of subtyping, a refinement type {x : T | C} is public if
T is public, since then {x : T | C} <: T <: Un, or if the formula ∀x.¬C is entailed by the
environment, since then {x : T | C} <:> ⊥ <: Un. Conversely, type {x : T | C} is tainted if T
is tainted and additionally ∀x.C holds.

Function Types. Function types are contravariant in their input and covariant in their output,
i.e., T → U is a subtype of T ′ → U ′ if T ′ is a subtype of T and U is a subtype of U ′. Intuitively,
this means that a function can be used in place of another function if the former accepts all
the inputs and returns a subset of the outputs of the latter. Consequently, if T is tainted (i.e.,
Un <: T ) and U is public (i.e., U <: Un) then T → U is public, since (T → U) <: (Un →
Un) <:> Un. Conversely, T → U is tainted if T is public and U is tainted. By relying on this
property, we define the type Private as ⊥ → ⊥, which is neither public nor tainted (again, unless
the environment is inconsistent).

Union and Intersection Types. The rules for subtyping and kinding union and intersection
types are reported in Table 5. The type T ∧ U is a subtype of T ′ if T or U is a subtype of
T ′ (cf. Sub-And-LB), while T ′ is a subtype of T ∧ U if it is subtype of both T and U (cf.
Sub-And-Greatest). Intuitively, the set of values of type T ∧ U is the intersection between
the set of values of type T and the set of values of type U . Similarly, T ∧ U is public if T or U
is public, and it is tainted if both T and U are tainted. The dual rules for union types are given
in Table 5.

3.4 Typing Values and Expressions

The main judgment of our type system is E ` A : T , which states that the expression A returns
a value of type T . The most important typing rules are reported in Table 6. Most of them are
standard, so we focus the explanation only on the rules that are new with respect to [13].

Conditionals. The rule Exp If exploits intersection types for strengthening the type of the
values tested for equality in the conditional if M = N as x then A else B. If M is of type T1

and N is of type T2, then we type-check A under the assumption that x = M ∧M = N , and
x is of type T1 ∧ T2. This corresponds to a type-cast that is always safe, since the conditional
succeeds only if M is syntactically equal to N , in which case the common value has indeed both
the type of M and the type of N . Additionally, if the conditional succeeds the types T1 and T2
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Table 5 Kinding and Subtyping Unions and Intersections
Subtyping

Sub And LB
Γ ` Ti <: U

Γ ` T1 ∧ T2 <: U

Sub And Greatest
Γ ` T <: U1 Γ ` T <: U2

Γ ` T <: U1 ∧ U2

Sub Or Smallest
Γ ` T1 <: U Γ ` T2 <: U

Γ ` T1 ∨ T2 <: U

Sub Or UB
Γ ` T <: Ui

Γ ` T <: U1 ∨ U2

Kinding

Kind And Pub
Γ ` Ti :: pub

Γ ` T1 ∧ T2 :: pub

Kind And Tnt
Γ ` T :: tnt Γ ` U :: tnt

Γ ` T ∧ U :: tnt

Kind Or Pub
Γ ` T :: pub Γ ` U :: pub

Γ ` T ∨ U :: pub

Kind Or Tnt
Γ ` Ti :: tnt

Γ ` T1 ∨ T2 :: tnt

cannot be disjoint. However, certain types such as Un and Private have common values only if
the environment is inconsistent, i.e., E |= false. Therefore, in such a case it is safe to add false to
the environment when type-checking A, which makes checking A always succeed. Intuitively, if
T1 and T2 are disjoint the conditional cannot succeed, so the expression A will not be executed.
The same idea has been applied in [2] for verifying the secrecy of nonce handshakes.

Union Types are introduced by subtyping, and eliminated using the Exp Case rule. Suppose
that M is of type T1 ∨ T2 and M is used in A. Intuitively, since we do not know whether M
is of type T1 or T2, we have to type-check A under each of the assumptions. Therefore, the
expression case x = M in A, where x takes the place of M in A, is of type U only if A is of type
U both when x is of type T1 and when x is of type T2. This is useful when type-checking code
interacting with the attacker. For instance, suppose that a party receives a value M encrypted
with a public-key that is used by honest parties to encrypt messages of type T . After decryption,
M is given type T ∨ Un since it might come from a honest party as well as from the attacker.
We have thus to type-check the receiver’s code both under the assumption that x is of type T
and under the assumption that x is of type Un.

Intersection Types are introduced using the Exp For rule (and eliminated by subtyping).
The expression for α̃ in T̃ ; Ũ do A is of type T1 ∧ T2 if A{T̃ /α̃} is of type T1 and A{Ũ/α̃} is of
type T2. Thus in order to introduce an intersection type, we have to type-check A twice. The
type annotations in A can differ between the two checks. The introduction of intersection types
is useful, for instance, when type-checking a function that can be used by honest participants
as well as by the attacker. For instance, the function for verifying digital signatures has a type
of the form Un→ ((T ∨ Un)→ T ) ∧ (Un→ Un). Honest participants pass a signature together
with the signed message, either at type T or at type Un, and get back the signed message with
the stronger type T . The attacker that has only access to messages of type Un can still call this
function, but the returned type is just Un.
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Table 6 Selected Rules for Values and Expressions E ` A : T

Val Fun
E, x : T ` A : U

E ` λx : T.A : (x : T → U)

Val Refine
E `M : T E |= C{M/x}

E `M : {x : T | C}

Exp Subsum
E ` A : T E ` T <: T ′

E ` A : T ′

Exp Appl
E `M : (x : T → U) E ` N : T

E `M N : U{N/x}

Exp Res
E, a l T ` A : U a /∈ fn(U)

E ` (νa l T )A : U

Exp If
E `M : T1 E ` N : T2

E, [x : T1 ∧ T2, ]_ : {[x = M∧]M = N ∧ non-disj(T1, T2)} ` A : U
E,_ : {M 6= N} ` B : U

E ` if M = N [as x] then A else B : U

Exp Assume
E ` � free(C) ⊆ dom(E)
E ` assume C : {_ : unit | C}

Exp Assert
E |= C

E ` assert C : unit

Exp Send
E `M : T (a l T ) ∈ E

E ` a!M : unit

Exp Recv
E ` � (a l T ) ∈ E

E ` a? : T

Exp For
i ∈ {1, 2} E ` A{T̃ i/α̃} : U

E ` for α̃ in T̃ 1; T̃ 2 do A : U

Exp And
E ` A : T E ` A : U

E ` A : T ∧ U

Exp Case
E `M : T1 ∨ T2 E, x : T1 ` A : U E, x : T2 ` A : U

E ` case x = M in A : U

3.5 Example

Let us consider again the protocol implementation from Section 2.2. Since we want to prove the
safety of the code when executed in parallel with the opponent, we give channel c type Un (i.e.,
Tchan = Un). The function mkId returns a public identifier and it is thus of type unit → Un.
The function getPrivString is instead of type unit → Private, since it returns a private string
. Notice that the sender signs a pair composed of a public identifier and a private message y
for which the predicate Ok(y) holds. In order to convey the predicate Ok(y) from the sender
to the receiver, we instantiate the polymorphic function for creating signing keys with the type
Tsign = Un∗{z : Private | Ok(z)}. Since the sender encrypts the signature together with the two
signed values, the encryption function is instantiated with Tenc = Un∗Un∗{z : Private | Ok(z)}.

We first analyze the sender’s code. The message y returned by getPrivString is of type
Private. After assume Ok(y), we can give y type {z : Private | Ok(z)} by applying Val Refine.
The type of the receiver’s identifier xb and the type of y comply with the type of the signing
and encryption keys. The sender’s code is thus well-typed.

The receiver decrypts the ciphertext and the result is stored in variable xy. This variable
is of type Un ∗ {z : Private | Ok(z)} ∨ Un ∗ Un2, which is equivalent by subtyping to Un ∗ ({z :
Private | Ok(z)} ∨ Un). The receiver splits the pair, obtaining a variable x of type Un bound to
the signature and a variable y of type ({z : Private | Ok(z)}∨Un) bound to the signed pair. We
anticipate here that these are precisely the types expected by the signature verification function,

2The ciphertext might have been generated by a honest user or by the attacker.
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which returns a value y′ of type Un ∗ {z : Private | Ok(z)}, since the signing key is secret and
only used to sign messages of this type . The signed pair y′ is split, obtaining a variable y1

of type Un bound to the receiver’s identifier and a variable y2 of type {z : Private | Ok(z)}
bound to the private message. This refinement type allows us to successfully type-check the
assert Ok(y2). The receiver’s code is thus also well-typed, so the whole program is well-typed
and hence robustly safe.

4 Implementation of Symbolic Cryptography

In this section, we illustrate the typed interface of the functions for digital signatures and public-
key cryptography. Section 4.1 overviews the sealing mechanism used in [13] to encode symbolic
cryptography, while sections 4.2 and 4.3 present our improvements to this encoding.

4.1 Dynamic Sealing

The notion of dynamic sealing was initially introduced by Morris [40] as a protection mechanism
for programs. Later, Sumii and Pierce [50, 49] studied the semantics of dynamic sealing within
a λ-calculus, observing a close correspondence with symmetric-key cryptographic primitives.

In RCF [13], a seal is a pair of a sealing function and an unsealing function. The type of a
seal is:

Seal 〈α〉 = (α→ Un) ∗ (Un→ α).

The sealing function takes as input a term M of type α and returns a fresh value a of type Un,
after storing the pair (M,a) in a secret list . The unsealing function takes as input a value a of
type Un, scans the list in search for a pair (M,a), and returns M . Only the sealing function and
the unsealing function can access this list. In RCF, each key-pair is (symbolically) implemented
by means of a seal. In the case of public-key cryptography, for instance, the sealing function
is used for encrypting, the unsealing function is used for decrypting, and the sealed value a
represents the ciphertext.

Let us take a look at the type Seal 〈α〉. If α is neither public nor tainted, as it is usually the
case for symmetric-key cryptography, neither the sealing function nor the unsealing function are
public, meaning that the symmetric key is kept secret. If α is tainted but not public, as usually
the case for public-key cryptography, the sealing function is public but the unsealing function is
not, meaning that the encryption key may be given to the adversary but the decryption key is
kept secret. If α is public but not tainted, as typically the case for digital signatures, the sealing
function is not public and the unsealing function is public, meaning that the signing key is kept
secret but the verification key may be given to the adversary.

Although this unified interpretation of cryptography as sealing and unsealing functions is
conceptually appealing, it actually exhibits some undesired side-effects when modeling asym-
metric cryptography. If the type of a signed message is not public, then the verification key is
not public either and cannot be given to the adversary. This is unrealistic, since verification
keys are always public , regardless of what is signed. As an example, in the Direct Anony-
mous Attestation protocol [20] the issuer signs the secret TPM’s identifier and the TPM proves
the knowledge of this certificate without revealing it by means of a zero-knowledge proof. The
verifier, however, needs to have access to the TPM’s verification key in order to verify the
zero-knowledge proof.

Moreover, if the type of a message encrypted with a public key is not tainted, then the public
key is not public and cannot be given to the adversary. This may be problematic, for instance,
when modeling authentication protocols based on public keys and nonce handshakes, such as
the Needham-Schroeder-Lowe protocol [37], where the type of the encrypted messages is neither
public nor tainted.
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These issues are not due to sealing itself but to the type Seal〈α〉 = α → Un ∗ Un → α
for seals, which is simple but not expressive enough to characterize all usages of asymmetric
cryptography.

4.2 Digital Signatures

In this section, we show how union and intersection types can be used to enhance the expres-
siveness of the type system and solve the aforementioned problems. The type of the seal used
in our library for digital signatures is reported below:

Sealsign〈α〉 = s : Un ∗ Sealingsign〈α〉 ∗ Unsealingsign〈α〉
Sealingsign〈α〉 = α→ Un
Unsealingsign〈α〉 = Un→

(
(x : (α ∨ Un)→ {y : α | x = y}) ∧ (Un→ Un)

)
The seal is a triple composed of a seal identifier s of type Un, the sealing function, and the
unsealing function. The identifier s is a “ghost variable” that is only used in the refinement
types given to the sealing and unsealing function. The logical formulas occurring therein link
the sealing function to the unsealing function and sealed values to the corresponding seal. This
serves to characterize in the logic some important properties of cryptographic primitives, such as
the determinism of the functions implementing signature verification and decryption. For easing
the presentation, we will present simpler types obtained by removing such logical formulas by
subtyping.

The implementation and the type of the sealing function for digital signatures is similar to
the one in [13]. The unsealing function, however, differs both in the implementation and in the
type. This function takes as input two arguments: the sealed value a representing a signature
and the messageM that was signed. Unsealing succeeds only if the pair (M,a) is in the secret list
associated to the seal, and in this case it returns M . As described by the type Unsealingsign〈α〉,
the first argument of the unsealing function is of type Un and corresponds to the signature. The
second part of this type is an intersection of two types: The type x : (α∨Un)→ {y : α | x = y}
is used to type-check honest callers: the signed message x passed to the unsealing function has
either type α (e.g., if the message is received encrypted, as in our running example, or from a
private channel) or of type Un (e.g., if the signature is received from a public channel), and the
message y returned by the unsealing function has the stronger type α, which means that the
unsealing function casts the type of the signed message from (α ∨ Un) down to α. This is safe
since the sealing function is not public and can only be used to sign messages of type α. The
type Un→ Un makes type Unsealingsign〈α〉 always public3, which allows the attacker to call the
unsealing function. Since, in contrast to [13] , the unsealing function and hence the verification
key is always public, we also can model protocols where the signing key is used to sign private
messages while the verification key is public, such as DAA.

Finally, we present our typed interface for digital signatures:

mkSK〈α〉 : unit→ Sealsign〈α〉
mkVK〈α〉 :

(
xsk : Sealsign〈α〉 → {xvk : Unsealingsign〈α〉 | SKPair(xvk , xsk )}

)
∧ Un

sign〈α〉 : (xsk : Sealsign〈α〉 → y : α→ {z : Un | Signed(xsk , y, z)}) ∧ Un
check〈α〉:

(
xvk : Unsealingsign〈α〉 → z : Un→ x : (α ∨ Un)→

{y : α | y = x ∧ ∃S.SKPair(xvk , S) ∧ Signed(S, x, z)}) ∧ Un

The mkSK function generates a signing key, which is just a seal, while mkVK takes this seal
and returns the verification key, which is just the unsealing component of the seal. The sign
function takes as input the signing key xsk and a message y, and it applies the sealing function

3A type of the form Un→ (T1 ∧ T2) is public if T1 or T2 are public, and in our case T2 = Un→ Un is public.
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to the message obtaining a sealed value z of type {z : Un | Signed(xsk , y, z)}. The predicate
in this refinement type records the signing operation. The check function takes as input the
verification key xvk , a sealed value z, and the signed message x, and it returns a value of type
{y : α | y = x ∧ ∃S.SKPair(xvk , S) ∧ Signed(S, x, z)}. The formula in this refinement type says
that the value returned by this function is the signed message x and that there exists a signing
key S associated to xvk such that z is the value obtained by signing x with S. Notice that we
give mkVK, sign and check intersection types similar to Unsealingsign〈α〉. While making these
functions available to the adversary is not strictly necessary4, this is convenient for the encoding
of zero-knowledge we describe in Section 5.

4.3 Public-Key Encryption

For public-key encryption we use a seal of type Seal 〈α ∨ Un〉. The sealing function takes as
input a value of type α or one of type Un, depending on whether the encryption is performed
by or a honest user by the attacker, and it returns a sealed value of type Un. The unsealing
function takes as input a sealed value of type Un and it returns the unsealed value of type α∨Un.
In contrast to [13], the sealing function is always public, even if the type α of the encrypted
message is not tainted5. Finally, we present the typed interface of the functions implementing
public-key cryptography. The formulas in the refinement types are similar to the ones for digital
signatures discussed in Section 4.2.

mkDK〈α〉 : unit→ Seal〈α ∨ Un〉
mkEK〈α〉 : (xdk : Seal〈α ∨ Un〉 → {xek : Sealing〈α ∨ Un〉 | EKPair(xek , xdk )}) ∧ Un
encrypt〈α〉 : (xek : Sealing〈α ∨ Un〉 → y : (α ∨ Un)→ {x : Un | Encrypted(xek , y, x)}) ∧ Un
decrypt〈α〉 : (xdk : Seal〈α ∨ Un〉 → x : Un→

{y : α ∨ Un | ∃E.EKPair(E, xdk ) ∧ Encrypted(E, y, x)}) ∧ Un

5 Encoding of Zero-knowledge

This section describes how we automatically generate the symbolic implementation of non-
interactive zero-knowledge proofs, starting from a high-level specification of their statements.
Intuitively, this implementation resembles an oracle that provides three operations: one for
creating zero-knowledge proofs of the statement, one for verifying proofs of the statement, and
one for obtaining the public witnesses of such proofs.

For creating a zero-knowledge proof the caller needs to provide values (witnesses) for the
variables mentioned in the statement. Some of these witnesses are revealed by the proof to the
verifier and to any eavesdropper, while the others are kept secret. A zero-knowledge proof does
not reveal any information about these secret witnesses, other than the validity (or invalidity)
of the statement that is being proved. A zero-knowledge proof is valid if the witnesses that are
used to create it satisfy the statement. When creating a proof, however, we do not require that
it is valid. Instead, a second operation is provided for verifying the validity of zero-knowledge
proofs. This verification succeeds if and only if the considered proof is indeed valid. The third
operation allows one to obtain the public witnesses of zero-knowledge proofs. Note that these
three operations need to be available not only to the honest participants of the protocol, but
also to the attacker.

We implement such a zero-knowledge oracle in RCF as three functions that share a secret
seal. In order to create a zero-knowledge proof the first function seals the witnesses provided by

4The attacker can already sign messages using a signing key to which he has access or obtain the verification
key corresponding to it by projecting the corresponding components in the triple representing the signing key.
He can also verify signatures by directly using the unsealing function inside the public verification key.

5A type of the form (T1 ∨ T2)→ Un is public if T1 or T2 is tainted, and in our case T2 = Un is tainted.
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the caller all together and returns a sealed value representing the non-interactive zero-knowledge
proof, which can be sent to the verifier. The verification function unseals the sealed witnesses,
and checks if they indeed satisfy the statement by performing the corresponding cryptographic
and logical operations. If verification succeeds then the verification function returns the public
witnesses of the proof. The public witnesses can also be obtained with the third function,
without checking the validity of the statement.

5.1 Example: Simplified DAA

As a running example throughout this section, we consider a simplified version of the Direct
Anonymous Attestation (DAA) protocol [20]. The goal of the DAA protocol is to enable the
TPM to sign arbitrary messages and to send them to an entity called the verifier in such a way
that the verifier will only learn that a valid TPM signed that message, but without revealing
the TPM’s identity. The DAA protocol is composed of two sub-protocols: the join protocol and
the DAA-signing protocol. The join protocol allows a TPM to obtain a certificate xcert from an
entity called the issuer. This certificate is just a signature on the TPM’s secret identifier xf . The
DAA-signing protocol enables a TPM to authenticate a message ym and to prove to the verifier
the knowledge of a valid certificate without revealing the TPM’s identifier or the certificate. In
this section, we focus on the DAA-signing protocol and we assume that the TPM has already
completed the Join protocol and received the certificate from the issuer. In the DAA-signing
protocol the TPM sends to the verifier the following non-interactive zero-knowledge proof:

TPM Verifier
assume Send(xf , ym)

zkSdaa
(xf ,xcert,yvki ,ym) //

assert Authenticate(ym)

where the statement Sdaa is of the form xf = check yvki xcert xf . Intuitively, the TPM proves the
knowledge of a certificate xcert of its identifier xf that can be verified with the verification key
yvki of the issuer. The TPM identifier and the certificate are kept secret, while the verification
key of the issuer is revealed to the verifier. This zero-knowledge proof additionally conveys a
public message ym that the TPM wants to authenticate with the verifier. Notice that this proof
guarantees non-malleability, i.e., the attacker cannot change ym without redoing the proof, since
the certificate and the identifier are kept secret.

Before sending the zero-knowledge proof, the TPM assumes Send(xf , ym). After verifying
the zero-knowledge proof, the verifier asserts Authenticate(ym). The authorization policy for the
DAA-sign protocol is

∀xf , xcert , ym. Send(xf , ym) ∧ OkTPM(xf )⇒ Authenticate(ym)

where the predicate OkTPM(xf ) is assumed by the issuer before signing xf .

5.2 High-level Specification

Our high-level specification of non-interactive zero-knowledge proofs is similar to the symbolic
representation of zero-knowledge proofs in a process calculus [11, 9]. The user needs to specify:
(1) the logical statement of the proof, (2) types for the variables in the statement, and, if desired,
(3) an additional logical formula that is conveyed by the proof.

Statements. The statements conveyed by zero-knowledge proofs are positive Boolean formulas.
They are formed using equalities between variables and RCF functions applied to variables, as
well as conjunctions and disjunctions of such basic statements. The precise syntax of statements
is given in Table 7.
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Table 7 Syntax of statements
S ::= statements

x = f〈T̃ 〉 x1 . . . xn function application
S1 ∧ S2 conjunction
S1 ∨ S2 disjunction

Intuitively, a statement is valid if after substituting all variables with the corresponding
witnesses and applying all RCF functions to their arguments we obtain a valid Boolean formula.
We assume that the RCF functions occurring in the statement have deterministic behaviour6,
i.e., when called twice with the same argument they return the same value. This is made more
formal in Figure 8.

Table 8 Semantics of statements [[S]] σ ∈ {true, false}

[[x = f〈T̃ 〉 x1 . . . xn]] σ,φ =
{

true if σ(x) = [[ f〈T̃ 〉]] φ(σ(x1), . . . , σ(xn))
false otherwise

[[S1 ∧ S2]] σ,φ = [[S1]] σ,φ ∧ [[S2]] σ,φ
[[S1 ∨ S2]] σ,φ = [[S1]] σ,φ ∨ [[S2]] σ,φ

Note: σ : Var→ Val is a substitution assigning closed values to the variables in S and φ : Var→
Val is a value environment mapping variables to closed values (usually functions).

For example, the statement of the zero-knowledge proof in the DAA-signing protocol is
Sdaa = (xf = check〈Tvki〉 yvki xcert xf ∧ ym = id〈Un〉 ym). Verification succeeds only if the
check function returns xf when the values of yvki , xcert , and xf are passed as arguments. The
type instantiation using Tvki does not affect the semantics, but it is necessary when deriving
types. The second conjunct simply mentions the message that is authenticated by the proof
and does not affect the semantics of the statement (id is the identity function). We introduce
this conjunct only so that ym appears in the statement. The verification function additionally
checks that the value given by the prover to yvki is the same as the one passed as argument
by the verifier. We call the variable yvki matched. This matching is done inside the verification
function (instead of later by the verifier) in order to obtain a stronger type for this function.

Sorts and Types. The values of the variables mentioned in a statement are either made public
or are kept secret. We further make a distinction between the public values that are matched by
the verifier, and the ones that are obtained as the result of the verification. In the following we
assume a function sortS that for each variable x occurring in the statement S assigns: matched
if the value of x is revealed by the proof and the verifier checks the value of x for equality with
a known value, public if x has a public value obtained by the verifier after checking the proof,
secret if the value of x is not revealed by the proof. For all variables occurring in a statement S
the user also needs to provide a type. In the following we assume a function TS that assigns a
type to any variable occurring in S.

In the simplified DAA example, the variables xf and xcert are secret (sortSdaa
(xf ) = sortSdaa

(xcert) =
secret), while yvki is matched against the signature verification key of the issuer, which the veri-
fier already knows (sortSdaa

(yvki) = matched). The payload message ym is revealed by the proof
to anyone including the attacker, so sortSdaa

(ym) = public and TSdaa
(ym) = Un. The TPM iden-

tifier xf is given a secret and untainted type: TSdaa
(xf ) = {zf : Private | OkTPM(zf )} = Tvki .

This ensures that xf is not known to the attacker and that it is certified by the issuer (i.e., the
predicate OkTPM(xf ) holds). The verification key of the issuer is used to check signed messages

6In order to model randomized functions one can take the random seed as an explicit argument.
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of type Tvki , so it is given type Unsealingsign 〈Tvki〉. Finally the certificate xcert is a signature, so
it has type Un. Even though it has type Un, it would break the anonymity of the user to give
the certificate sort public, since the verifier could then distinguish if two consecutive requests
come from the same user or not (as in the pseudonymous version of DAA). While we assume
that if sortS (x) = public or sortS (x) = matched then TS(x) has kind public, the converse does
not need to be true.

Additional Logical Formula. The user can additionally specify an arbitrary logical formula
over (some of) the variables occurring in the statement. This formula depends on the logic of
the protocol, and does not need to follow from the statement, but it has to hold true, in addition
to the statement, in the typing environment of the prover. If the statement is strong enough to
identify the prover as a honest (type-checked) protocol participant7, then the additional formula
can be safely transmitted to the typing environment of the verifier. For a statement S we denote
this additional logical formula by CS . In the DAA example we have that CSdaa

= Send(xf , ym),
since this predicate does not follow from the statement but it holds true in the typing environment
of the (honest) prover .

5.3 Automatic Code Generation

We automatically generate both a typed interface and a symbolic implementation for the oracle
corresponding to a zero-knowledge statement.

5.3.1 Typed Interface

The interface generated for a zero-knowledge statement contains just one function: mkZK. When
passed a unit this function returns the three functions implementing the zero-knowledge oracle.
This setup is necessary since the three functions share hidden state.

mkZKS : unit→ (CreateS ∗ VerifyS ∗ Public)

The types of the three functions are as follows8:

CreateS = τS → Un
where τS = Un ∨

∑
x∈vars(S) x : TS(x).{CS}

Public = Un→ Un
VerifyS = Un→ (Un ∧

∏
y∈matched(S)

y : TS(y).∑
y∈public(S)

y : TS(y).{ ∃x̃.ex=secret(S)
CS ∧ F (S,E)} )

The function used to create zero-knowledge proofs has type CreateS . It takes as argument all
the witnesses of the proof as a tuple, or an argument of type Un if it is called by the adversary.
In case a protocol participant calls this function, we check that the witnesses have the types
provided by the user. Additionally, we check that the formula CS provided by the user holds in
the typing environment of the prover. The returned zero-knowledge proof is given type Un so
that it can be sent over the public network. For instance, in the DAA example we have that:
τSdaa

= Un ∨ (yvki : Sealsign 〈Tvki〉 ∗ ym : Un ∗ xf : Tvki ∗ xcert : Un ∗ {Send(xf , ym)}), where
Tvki = {zf : Private | OkTPM(zf )}.

7Signature proofs of knowledge have this property [20, 39].
8We use

P
x∈vars(S) x : TS(x).{CS} to denote the nested dependent pair type x1 : TS(x1) ∗ . . . ∗ xn : TS(xn) ∗

{CS} where ex = vars(S), and
Q

y∈matched(S)y : TS(y). T to denote the dependent function type y1 : TS(y1) →
. . .→ ym : TS(ym), where ey = matched(S).
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Table 9 The formula conveyed by a statement F (S,E)

F (x = f〈Ũ〉 x1 . . . xn, E) =


∧C∈forms(x:T )C{x̃/ỹ} if f : ∀α̃.U ∈ E

and U{Ũ/α̃} = (
∏
ỹ : T̃ . T ) ∧ Un

true otherwise
F (S1 ∧ S2, E) = F (S1, E) ∧ F (S2, E)
F (S1 ∨ S2, E) = F (S1, E) ∨ F (S2, E)

The function used to read the public witnesses of a zero-knowledge proof has type Public.
This function takes as input the sealed zero-knowledge proof of type Un and returns the tuple
of public witnesses, also at type Un.

The function used for verifying zero-knowledge proofs has type VerifyS . This function can
be called by the attacker in which case it returns a value of type Un. When called by a protocol
participant, however, it takes as argument a candidate zero-knowledge proof of type Un and the
values for the matched variables, which have the user-specified types. On successful verification,
this function returns a tuple containing the values of the public variables, again with their
respective types. The function guarantees that the formula ∃x̃.CS ∧ F (S,E) holds, where the
public and matched variables can appear and the secret variables are existentially quantified. If
the prover is a protocol participant then the first conjunct CS was already checked when creating
the proof, and can be easily justified. However, the attacker can, at least in principle, also create
valid zero-knowledge proofs for which the formula CS does not hold. In order to justify its return
type, the implementation of the verification function has in many cases to make sure that this is
actually not the case, and the proof can only come from a protocol participant. This is explained
in more detail in Section 5.3.2. The second conjunct, F (S,E), guarantees that if verification
succeeds then the statement indeed holds, no matter what the origin of the proof is. Since
the statement itself is not a formula in the logic (as it was for instance the case in [9]), we
use a transformation function F that computes the formula conveyed by the statement. This
transformation is straightforward with the exception of function applications, where we use the
formulas guaranteed by the dependently-typed cryptographic functions. The formal definition
is given in Table 9.

For instance, in the DAA example, we have that

F (Sdaa , Estd ) = F (xf = check〈Tvki〉 yvki xcert xf , Estd ) ∧ F (ym = id〈Un〉 ym, Estd )

The second conjunct is equal to (ym = ym), since the identity function is typed to x : Un →
{y : Un | x = y} in our standard library. As explained in Section 4, we have that Estd `
check〈Tvki〉 : xvk : Unsealingsign〈Tvki〉 → z : Un → x : (Tvki ∨ Un) → {y : Tvki | y =
x∧∃SK.SKPair(xvk, SK)∧Signed(SK, x, z)}. So for the first conjunct after applying the cor-
responding substitutions we obtain: (xf = xf )∧ (∃sk.SKPair(yvki , sk)∧ Signed(sk, xf , xcert))∧
OkTPM(xf ). The predicate OkTPM(xf ) was obtained from the nested refinement type Tvki ,
according to the definition of forms from Section 3. Finally, after removing the trivial equalities
we obtain that:

F (Sdaa , Estd ) = (∃sk.SKPair(yvki , sk) ∧ Signed(sk, xf , xcert)) ∧ OkTPM(xf ).

5.3.2 Implementation

The generated mkZKS function creates a fresh seal k of type τS = Un∨
∑

x∈vars(S) x : TS(x).{CS}.
The union type is necessary since the witnesses that are sealed can come from the attacker as
well as from honest participants. The sealing function of the seal k is directly used to implement
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the creation of zero-knowledge proofs. The unsealing function is instead passed to two auxiliary
functions pubS and verS that return the function for extracting the public witnesses and the
zero-knowledge verification function, respectively.
mkZKS = λx : unit.

let k = mkSeal〈τS〉 () in
let (_, ksealing , kunsealing) = k in
(ksealing , verS kunsealing , pubS kunsealing)

pubS : (Un→ τS)→ Un→ Un
verS : (Un→ τS)→ VerifyS

The implementation of pubS is very simple: since the zero-knowledge proof is just a sealed
value, pubS unseals it using the sealing function received as argument and returns all public and
matched witnesses as a tuple (ỹz). The secret witnesses x̃ are simply discarded, and the validity
of the statement is not checked.

pubS = λkunsealing : Un→ τS .λz : Un.
let z′ = kunsealing z in
case z′′ = z′ in
let (ỹz, x̃) = z′′ in (ỹz)

The case construct is necessary since τS is a union type. In case z′ has type Un then the
declared return type Un is trivial to justify. In case z′ has type

∑
x∈vars(S) x : TS(x).{CS} we

rely on the earlier assumption that all public and matched variables have a public type, in order
to give the returned tuple (ỹ) type Un.

The type and the implementation of the verS function are more involved. The function
inputs the unsealing function kunsealing of type Un→ τS , a candidate zero-knowledge proof z of
type Un, and values for the matched variables. Since the type VerifyS contains an intersection
type (Un is one of the branches and this makes the type VerifyS public) we use a for construct
to introduce this intersection type. If the proof is verified by the attacker we can assume
that for all y′ ∈ matched(S) we have y′ : Un and need to type the return value to Un. On
the other hand, if the proof is verified by a protocol participant we can assume that for all
y′ ∈ matched(S) we have y′ : TS(y′), and need to give the returned value type

∑
y∈public(S) y :

TS(y).{∃ex=secret(S)x̃. CS ∧ F (S,E)}. Intuitively, the strong types of the matched values allow
us to guarantee the strong types of the returned public values, as well as the two formulas CS
and F (S,E).

The generated verS function performs the following five steps (the first three ones are the
same as for the pubS function): (1) it unseals z using kunsealing and obtains z′; (2) since z′
has a union type, it does case analysis on it, and assigns its value to z′′; (3) it splits the tuple
z′′ into the matched witnesses ỹ, the public ones z̃, and the secret ones x̃; (4) it tests if the
matched witnesses ỹ are equal to the values ỹ′ received as arguments, and in case of success
assigns the equal values to the variables ỹ′′ – since ỹ′′ have stronger types than ỹ and ỹ′ we use
these variables to stand for the matched witnesses in the following; (5) it tests if the statement is
true by applying the functions in S and checking the results for equality with the corresponding
witnesses. This last step (denoted by “exp(prime(S), {ỹ′′/ỹ})”) is slightly complicated by the
fact that the statement can contain disjunctions and is discussed in more detail below.

verS = λkunsealing : Un→ τS .λz : Un.

for α̃ in Ũn; T̃S(y) do
λy′1 : α1. . . . λy

′
n : αn.

(∗1∗) let z′ = kunsealing z in
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Table 10 Converting Decision Trees to Expressions
exp(true, σ) = (σ(z1), . . . , σ(zn)), where z̃ = public(S)
exp(false, σ) = failwith ()
exp(if x = f〈T̃ 〉 x1 . . . xn then D1 else D2, σ) =

if σ(x) = f〈T̃ 〉 σ(x1) . . . σ(xn) as y then
exp(D1, σ{y/x}) else exp(D2, σ)

Note: Variables y, y1, and y2 are always freshly chosen.

(∗2∗) case z′′ = z′ in
(∗3∗) let (ỹ, z̃, x̃) = z′′ in

(∗4∗) if (ỹ) = (ỹ′) as (ỹ′′) then

(∗5∗) “ exp(prime(S), {ỹ′′/ỹ})”
else failwith ()

In order to convert a statement into the corresponding succession of tests, we first break the
statement S into the corresponding atomic statements of the form R = (x = f〈T̃ 〉 x1 . . . xn).
By slightly abusing notation, we denote this decomposition as S [R1, . . . , Rn]. We then convert
S [R1, . . . , Rn] into a decision tree. Decisions trees are defined by the following grammar:

D ::= true | false | if x = f〈T̃ 〉 x1 . . . xn then D1 else D2

We implement this as a function called prime, that given a decomposed statement S [R1, . . . , Rn]
produces its prime tree, i.e., an ordered and reduced decision tree; we refer the interested reader
to [21, 48] for the details.

Finally, the decision tree prime(S [R1, . . . , Rn]) is converted into an RCF expression using a
function called exp (Table 10). Other than the decision tree, this function takes as argument a
substitution σ that records which is the variable with the strongest type that corresponds to each
witness. Initially this substitution is {ỹ′/ỹ}, i.e., it maps the matched variables ỹ to the values
ỹ′ taken as arguments (remember that since ỹ and ỹ′ were tested for equality in the previous
step and ỹ′ have the stronger types). After checking each atomic statement the conversion
introduces new variables that stand for some of the witnesses and updates the substitution
accordingly. The conversion works as follows. The leaves of the decision tree marked with true
are converted into expressions that return the tuple (σ(x1), . . . , σ(xn)), i.e., a tuple containing
the public witnesses with their strongest type. The leaves marked with false are converted into an
expression that indicates a verification error. The inner nodes of the decision tree are converted
into if statements. More precisely, a node “ if x = f〈T̃ 〉 x1 . . . xn then D1 else D2” in the tree is
converted into an application on the function f〈T̃ 〉 to the arguments σ(x1) . . . σ(xn). The result
is then checked for equality with σ(x), using an if statement with an “as y” clause, where y is a
fresh variable. In order to generate the tree corresponding to a successful check we recursively
invoke exp on D1 and the substitution updating σ to match x to y. The else branch is generated
by recursively calling exp(D2, σ).

In the DAA example the decision tree has a very simple (linear) structure:
if xf = check〈Tvki〉 yvki xcert xf then

if ym = id〈Un〉 ym) then true
else false else false.
This decision tree is used to generate the following verification function:

verSdaa
= λkunsealing : Un→ τSdaa

.λz : Un.
for α in Un; Unsealingsign 〈Tvki〉 do λy′vki : α.
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let z′ = kunsealing z in
case z′′ = z′ in
let (yvki , ym, xf , xcert) = z′′ in
if (yvki) = (y′vki) as (y′′vki) then

if xf = check〈Tvki〉 y′′vki xcert xf as x′f then

if ym = id〈Un〉 ym as y′m then
(y′m, ())

else failwith ()
else failwith ()

else failwith ()

5.3.3 Checking the Generated Implementation

Since the automatically generated implementation of zero-knowledge proofs relies on types and
formulas provided by the user, which may both be wrong, the generated implementation is not
guaranteed to fulfill its interface. We use our type-checker to check whether this is indeed the
case. If type-checking the generated code against its interface succeeds, then this code can be
safely used in protocol implementations.

Type-checking the DAA example succeeds, and we illustrate this on the verSdaa
function.

The for construct requires us to type-check the body of the function twice. The first time the
type of the argument y′vki has type Un and we need to give the result (y′m, ()) type Un. This is
immediate since y′m has type Un∧Un which is equivalent to Un. The second time we type-check
the body of the function, the argument y′vki is given type Unsealingsign〈Tvki〉. The type of z′
is τSdaa

, i.e., a union type where one of the types is Un, so we have again two sub-cases to
consider. Intuitively, if z′′ is of type Un then the proof comes from the attacker. The application
check〈Tvki〉 y′′vki xcert xf is typed to Tvki = {zf : Private | OkTPM(zf )}. On the other hand,
xf is obtained by splitting z′′ that has type Un, so it also has type Un. However, the types
Un and Tvki are not disjoint only if false is entailed in the typing environment. This causes the
second if to add false to the typing environment, and therefore the return value to have any
type, including the one specified in the interface. Intuitively, this means that if the proof comes
from the adversary the second if will never succeed since the attacker does not know the secret
TPM identifier, so it is safe to return anything on that branch. Finally, we need to consider the
case when z′′ is of type (yvki : Sealsign 〈Tvki〉 ∗ ym : Un ∗ xf : Tvki ∗ xcert : Un ∗ {Send(xf , ym)}).
After splitting z′′ the predicate Send(xf , ym) is entailed by the environment, and, since xf has
type Tvki , also OkTPM(xf ) is entailed. The third if adds the equality ym = y′m, so that also
Send(xf , y′m) holds. Since, ∃xf . Send(xf , y′m) ∧ OkTPM(xf ) is logically entailed we can justify
the return type of the function also in this case.

In general, there are two situations in which type-checking the generated implementation
fails. First, the types provided by the user for the the public witnesses are not public. In this
case the implementation of pubS cannot match its defined type Un→ Un. Second, the formula
CS is not justified by the statement and the types of the witnesses. In this case verS cannot
match its defined type.

6 Implementation

We have implemented a complete tool-chain for RCF: it includes a type-checker for the type
system described in Section 3, an automatic code generator for zero-knowledge as defined in
Section 5, an interpreter, and a visual debugger.

The type-checker performs some amount of type inference, and supports an extended syntax
with respect to the one in the paper, including: interfaces, algebraic data types, recursive
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functions, type definitions, and mutable references. We use first-order logic with equality as
the authorization logic and the type-checker invokes an automatic theorem prover to discharge
the proof obligations. We use the TPTP syntax for the generated proof obligations, which is a
standard supported by most first-order theorem provers [51] (in our experiments we used the E
equational prover [47]). We have tested the type-checker on the samples in Appendix ?? and
on other simple examples; the analysis only took several seconds in each case. The type-checker
produces an XML log file containing the complete type derivation in case of success, and a
partial derivation that leads to the typing error in case of failure. This can be inspected using
our visualizer to easily detect and fix flaws in the protocol implementation.

The type-checker, the code generator for zero-knowledge, the interpreter are command-line
tools implemented in F#, while the graphical user interfaces of the visual debugger and the
visualizer for type derivations are specified using WPF (Windows Presentation Foundation).
The type-checker consists of around 2000 lines of code, while the whole tool-chain has over 4500
lines of code. All the tools are available at [10].

7 Conclusions and Future Work
We have presented a general technique for verifying implementations of cryptographic protocols
based on zero-knowledge proofs. We developed a tool that automatically generates the symbolic
implementation of non-interactive zero-knowledge proofs, starting from a high-level specification
of their statements. The security of RCF protocol implementations is verified by a type system
combining refinement, union, and intersection types. The analysis is fully automated, efficient,
and compositional.

As future work, we plan to investigate the automated generation of concrete cryptographic
implementation of zero-knowledge proofs, and thus to complement the generation of symbolic
implementations as considered in this paper.

Finally, we intend to apply our framework to analyze modern cryptographic applications,
such as the full implementation of the Direct Anonymous Attestation protocol and the recently
proposed Civitas electronic voting system [24].
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A RCF

A.1 Syntax

Table 11 repeats the syntax of RCF. Additional to the calculus considered in the body of the
paper we are considering kind-bounded polymorphism, i.e., bounded polymorphism where the
(upper or lower) bound is type Un.

Table 11 Syntax of RCF values and expressions
a, b, c name
x, y, z variable
M,N ::= value

x variable
() unit
λx : T.A function
(M,N) pair
Λα[:: k].A [kind-bounded] polymorphic value
fold M recursive value
for α̃ in T̃ ; Ũ do M value of intersection type

A,B ::= expression
M value
M N function application
M〈T 〉 type instantiation
if M = N [as x] then A else B equality check [with type cast]
let x = A in B let
let (x, y) = M in A pair split
unfold M use recursive value
for α̃ in T̃ ; Ũ do A introduction of intersection types
case x = M in A elimination of union types
(νa l T )A restriction
A � B fork
a!N transmission of M on channel a
a? receive message off channel a
assume C assumption of formula C
assert C assertion of formula C

Notation: We use square brackets to denote optional parts.

A.2 Operational Semantics

The operational semantics is standard (Table 12), and (conservatively) extends the one in [13, 14]
to the newly introduced constructs. The semantics of the for construct is similar to the one in
[25].

A.3 Authorization Logic

We use the same generic definition of an authorization logic, and the same authorization logic
instance as in [13, 14]: classical first order-logic with equality where the RCF values are syntac-
tically9 embedded (FOL/F). In principle we could also use intuitionistic first-order logic as
the authorization logic.

9Equality between embedded functions is only up to α-conversion.
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Table 12 Extensions to the reduction relation of RCF

(Λα[:: k].A)〈T 〉 → A{T/α} (Red Inst)
if M = M then A else B → A (Red Eq)

if M = M as x then A else B → A{M/x} (Red Cast Eq)
if M = N [as x] then A else B → B, if M 6= N (Red Not Eq)

for α̃ in T̃ ; Ũ do A→ for α̃ in T̃ ; Ũ do A′, if A→ A′ (Red For Ctxt)

(for α̃ in T̃ ; Ũ do M) N → for α̃ in T̃ ; Ũ do (M N), if α 6∈ free(N) (Red For Appl)

for α̃ in T̃ ; Ũ do M →M, if {α̃} ∩ free(M) = ∅ (Red For Remove)
case x = M in A→ A{M/x} (Red Case)
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B Type System

Table 13 Syntax of Types
T,U, V ::= type

> top type
unit unit type
x : T → U dependent function type
x : T ∗ U dependent pair type
T ∧ U intersection type
T ∨ U union type
µα.T iso-recursive type
∀α [:: k] .T [bounded] polymorphic type
α type variable
{x : T | C} refinement type

Notations: Let Un denote the type unit, {C} denote the “OK” type {x : Un | C}, where
x 6∈ fv(C), ⊥ denote {false}, and Private denote ⊥ → ⊥ (where by T → U we mean x : T → U

with x 6∈ free(U)). Let x̃ : T̃ denote x1 : T1, . . . , xn : Tn for some n.

Table 14 Judgments
E ` � E is syntactically well-formed
E ` T in E, type T is syntactically well-formed
E |= C formula C is derivable from E
E ` T :: k in E, type T has kind k
E ` T <: U in E, type T is a subtype of type U
E ` A : T in E, expression A has type T

Table 15 Syntax of Typing Environments
µ ::= environment entry

α[:: k] [bounded] type variables
α <: α′ subtyping for type variables (α 6= α′)
a l T channel name
x : T variable

E ::= µ1, . . . , µn environment
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Table 16 Well-formed Environment

Env Empty
∅ ` �

Type
E ` � free(T ) ⊆ dom(E)

E ` T

Env Entry
E ` � free(µ) ⊆ dom(E) dom(µ) ∩ dom(E) = ∅

E,µ ` �

Derive
E ` � free(C) ⊆ dom(E) forms(E) |= C

E |= C

Definition:

dom(α[:: k]) = {α}
dom(α <: α′) = {α, α′}
dom(a l T ) = {a}
dom(x : T ) = {x}
dom(µ1, . . . , µn) = dom(µ1) ∪ . . . ∪ dom(µn)

Definition:

forms(y : {x : T | C}) = {C{y/x}} ∪ forms(y : T )
forms(y : T1 ∧ T2) = forms(y : T1) ∪ forms(y : T2)
forms(y : T1 ∨ T2) = {C1 ∨ C2 | C1 ∈ forms(y : T1), C2 ∈ forms(y : T2)}
forms(E1, E2) = forms(E1) ∪ forms(E2)
forms(E) = ∅, otherwise

Definition: tvars(E) = {α | α ∈ dom(E)}
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Table 17 Kinding (k ∈ {pub, tnt}) E ` T :: k

Let k satisfy pub = tnt and tnt = pub

Kind Var
α ∈ dom(E) E |= false

E ` α :: k

Kind Var Bounded
E ` � (α :: k) ∈ E

E ` α :: k

Kind Unit
E ` �

E ` unit :: k

Kind Fun
E ` T :: k E, x : T ` U :: k

E ` (x : T → U) :: k

Kind Pair
E ` T :: k E, x : T ` U :: k

E ` (x : T ∗ U) :: k

Kind Rec
E,α :: k ` T :: k
E ` (µα.T ) :: k

Kind Refine Pub
E ` {x : T | C} E ` T :: pub

E ` {x : T | C} :: pub

Kind Refine Empty Pub
E ` {x : T | C} E, x : T |= ¬C

E ` {x : T | C} :: pub

Kind Refine Tnt
E ` T :: tnt E, x : T |= C

E ` {x : T | C} :: tnt

Kind Top Tnt
E ` �

E ` > :: tnt

Kind Top Pub
E |= false

E ` > :: pub

Kind And Pub1
E ` T :: pub

E ` T ∧ U :: pub

Kind And Pub2
E ` U :: pub

E ` T ∧ U :: pub

Kind And Tnt
E ` T :: tnt E ` U :: tnt

E ` T ∧ U :: tnt

Kind Or Pub
E ` T :: pub E ` U :: pub

E ` T ∨ U :: pub

Kind Or Tnt1
E ` T :: tnt

E ` T ∨ U :: tnt

Kind Or Tnt2
E ` U :: tnt

E ` T ∨ U :: tnt

Kind Forall
E,α ` T :: k
E ` ∀α.T :: k

Kind Forall Bounded
E,α :: k′ ` T :: k
E ` ∀α :: k′.T :: k

Derived rules:

Kind Ok Public
E ` {C}

E ` {C} :: pub

Kind Ok Tainted
E ` {C} E |= C

E ` {C} :: tnt
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Table 18 Subtyping E ` T <: U

Sub Refl
E ` T tvars(E) ∩ free(T ) = ∅

E ` T <: T

Sub Public Tainted
E ` T :: pub E ` U :: tnt

E ` T <: U

Sub Fun
E ` T ′ <: T E, x : T ′ ` U <: U ′

E ` (x : T → U) <: (x : T ′ → U ′)

Sub Pair
E ` T <: T ′ E, x : T ` U <: U ′

E ` (x : T ∗ U) <: (x : T ′ ∗ U ′)

Sub Var
E ` � α <: α′ ∈ E

E ` α <: α′

Sub Rec
E,α <: α′ ` T <: T ′ α 6∈ free(T ′) α′ 6∈ free(T ′)

E ` µα.T <: µα′.T

Sub Refine Left
E ` {x : T | C} E ` T <: T ′

E ` {x : T | C} <: T ′

Sub Refine Empty
E ` {x : T | C} E, x : T |= ¬C

E ` {x : T | C} <: T ′

Sub Refine Right
E ` T <: T ′ E, x : T |= C

E ` T <: {x : T ′ | C}

Sub Top
E ` T

E ` T <: >

Sub And LB1
E ` U E ` T <: T ′

E ` T ∧ U <: T ′

Sub And LB2
E ` T E ` U <: T ′

E ` T ∧ U <: T ′

Sub And Greatest
E ` T <: T1 E ` T <: T2

E ` T <: T1 ∧ T2

Sub Or Smallest
E ` T1 <: T E ` T2 <: T

E ` T1 ∨ T2 <: T

Sub Or UB1
E ` U E ` T ′ <: T

E ` T ′ <: T ∨ U

Sub Or UB2
E ` T E ` T ′ < U

E ` T ′ <: T ∨ U

Sub Forall
E,α ` T <: U

E ` ∀α.T <: ∀α.U

Sub Forall Bounded
E,α :: k ` T <: U

E ` ∀α :: k.T <: ∀α :: k.U

Derived rules:

Sub Refine
E ` T <: T ′ E, x : {x : T | C} |= C ′

E ` {x : T | C} <: {x : T ′ | C ′}

Sub Ok
E, {C} |= C ′

E ` {C} <: {C ′}

Table 19 More subtyping rules E ` T <: U

Sub Dist Int-Arr
E ` (x : T → U1) ∧ (x : T → U2) <: (x : T → U1 ∧ U2)

Note: The other direction of these rules can be already obtained as a derived rule.
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Table 20 Rules for Values E `M : T

Val Var
E ` � (x : T ) ∈ E

E ` x : T

Val Unit
E ` �

E ` () : unit

Val Fun
E, x : T ` A : U

E ` λx : T.A : (x : T → U)

Val Pair
E `M : T E ` N : U{M/x}

E ` (M,N) : (x : T ∗ U)

Val Fold
E `M : T{µα.T/α} E ` µα.T

E ` fold M : µα.T

Val Refine
E `M : T E |= C{M/x}

E `M : {x : T | C}

Val Poly
E,α ` A : T

E ` Λα.A : ∀α.T

Val Poly Bounded
E,α :: k ` A : T

E ` Λα :: k.A : ∀α :: k.T

Derived rules:

Val Ok
E |= C

E ` () : {C}

Table 21 Formula Extraction A

(νa l T )A = ∃a. A A � B = A ∧B let x = A in B = A assume C = C

A = true, otherwise

Table 22 Logical Characterization of Type Disjointness non-disj(T1, T2)

non-disj(Un,Private) = non-disj(Private,Un) = false

non-disj(Un, {x : Private | C}) = non-disj({x : Private | C},Un) = false

non-disj(T,U) = true, otherwise

Property: If there exists N so that E ` N : T and E ` N : U then E |= non-disj(T,U).
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Table 23 Rules for Expressions E ` A : T

Exp Subsum
E ` A : T E ` T <: T ′

E ` A : T ′

Exp Appl
E `M : (x : T → U) E ` N : T

E `M N : U{N/x}

Exp Split
E `M : (x : T ∗ U) E, x : T, y : U,_ : {(x, y) = M} ` A : V {x, y} ∩ fv(V ) = ∅

E ` let (x, y) = M in A : V

Exp If
E `M : T1 E ` N : T2

E, [x : T1 ∧ T2, ]_ : {[x = M∧]M = N ∧ non-disj(T1, T2)} ` A : U
E,_ : {M 6= N} ` B : U

E ` if M = N [as x] then A else B : U

Exp Unfold
E `M : µα.T

E ` unfold M : T{µα.T/α}

Exp Assume
E ` � free(C) ⊆ dom(E)
E ` assume C : {_ : unit | C}

Exp Assert
E |= C

E ` assert C : unit

Exp Let
E ` A : T E, x : T ` B : U x /∈ fv(U)

E ` let x = A in B : U

Exp Res
E, a l T ` A : U a /∈ fn(U)

E ` (νa l T )A : U

Exp Send
E `M : T (a l T ) ∈ E

E ` a!M : unit

Exp Recv
E ` � (a l T ) ∈ E

E ` a? : T

Exp Fork
E,_ : {A2} ` A1 : T E,_ : {A1} ` A2 : U

E ` (A1 � A2) : U

Exp Inst
E ` A : ∀α.U E ` T
E ` A〈T 〉 : U{T/α}

Exp Inst Bounded
E ` A : ∀α :: k.U E ` T :: k

E ` A〈T 〉 : U{T/α}

Exp Case
E `M : T1 ∨ T2 E, x : T1 ` A : U E, x : T2 ` A : U

E ` case x = M in A : U

Exp For
i ∈ {1, 2} E ` A{T̃ i/α̃} : U

E ` for α̃ in T̃ 1; T̃ 2 do A : U

Exp And
E ` A : T E ` A : U

E ` A : T ∧ U

Derived rule:

E ` A{T̃ /α̃} : V1 E ` A{Ũ/α̃} : V2

E ` for α̃ in T̃ ; Ũ do A : V1 ∧ V2
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