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Abstract

This thesis describes a new prototype tool that automatically generates a secure F# im-
plementation of any protocol described in the Spi calculus. Type systems were previously
proposed for analysing the security of both Spi calculus processes and F# implementations.
The thesis investigates a formal translation from the Spi calculus to F# that is proved to
preserve typability, and therefore the security properties of the original protocol are pre-
served.
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1 Introduction

This thesis connects the verification of protocol models and protocol implementations and
aims at automatically translating protocols from an abstract calculus to source code in a
programming language that can be compiled and run. The translation is proved to preserve
the security properties of the original Spi protocol. I have chosen the Spi calculus [Aba99,
AB05] as the source for my translation and F# as the target.

1.1 Previous Work

To date, most protocols are defined informally, which can easily lead to security vulnera-
bilities. Even standardised protocols, that went through thorough peer review, have been
shown to contain security vulnerabilities, e.g. in [Low96, WS96, Ble98, Fis03, BCJ+06].
However, once a model of a protocol is formalised one can use many automated tools, such
as ProVerif [Bla05], and type systems such as [Aba99, AB01, GJ04, HJ06, BFM07, BCFM07],
to verify security properties like secrecy and authenticity.
Some of the techniques from protocol verification have recently been adopted to imple-
mentations in real programming languages. While some research is done on low-level lan-
guages like C [GLRV05] I will focus on the higher-level language F# for which a tool extract-
ing ProVerif models [BFGT06] as well as a typechecker [BBF+08] exist.

1.2 Usefulness of the translation

To run a protocol formalised in Spi one would either need an interpreter or need to trans-
late it into another programming language. An interpreter would be of little use as most
protocols are used as part of a bigger application and this application would have to be
written in an actual programming language.
A manual implementation leaves the risk of bugs in the implementation creating security
holes in the otherwise secure protocol. This recently became obvious in [Deb08], where
the SSL protocol, that is considered secure, was made vulnerable by a poor implementa-
tion of the random number generator. One could avoid certain bugs in the implementation
phase by using F# as an implementation language and then using a typechecker [BBF+08]
to verify security properties, however as protocols or their implementation change they
are harder to keep in sync manually. Writing protocols in Spi rather than directly in F#
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1.3. CONTRIBUTIONS 4

also has the advantage that Spi is much more abstract and one can focus on the protocol
itself rather than implementation details. Currently this is mostly interesting for protocol
designers and rapid prototyping. In a stable version of the code generator it could be part
of the build process and save developers time. Just as a parser can be generated using yacc
[Joh78] a protocol implementation could be created using a code generator.
The automatic generation of F# code is preferable. Even though the implementation of
the code generator itself is hard to verify, the resulting code can be checked using the F7
typechecker for F#. Thismakes F# amore suitable target language at themoment than Java
for example.

1.3 Contributions

This thesis contributes to secure protocol implementations by formally defining a transla-
tion from Spi protocols to F# implementations. This translation is proved to guarantee that
every protocol that typechecks in Spi will also typecheck in F# after the translation. The
fact that the protocol typechecks in F# ensures that secrecy and authentication properties
of the model carry over to the generated implementation. The generated code therefore
has the same security properties as the original Spi protocol. I also implemented a proto-
type code generator that performs said translation automatically. This tool produces code
that can be verified using the typechecker from [BBF+08] as well as compiled and runwith
some limitations.
Defining such a translation was challenging, but the task was eased by the fact that the tar-
get language is a simple and well-defined core calculus. The fact that the two type systems
are similarmade proving this translation to preserve typability easier. Proving that typabil-
ity is preserved allowed me to show that security properties are preserved without having
to prove the translation functionally correct. For the implementation I took advantage of
the infrastructure provided by F# and F7, especially useful were the libraries that already
provide a functional interface to the .net cryptographic functions.

1.4 Overview

Chapter 2 presents an extensible variant of the Spi calculus which constitutes the source
language ofmy translation. Chapter 3 presents the target ofmy translation, which is named
RCF and is a core calculus of F#. Chapter 4 defines a translation from Spi to a normal form
which is needed as an intermediate step. Chapter 5 gives the translation from Spi to RCF
and Section 5.4 proves this translation to preserve typablitiy. Chapter 6 gives an overview
of the implementation of the code generator. Chapter 7 summarises and concludes.



2 The Spi calculus

In this thesis I consider an extensible variant of the Spi calculus in which new types, con-
structors and destructors can be easily added. It was introduced in [AB05] and the type
system was later extended in [FGM07]. I use the calculus and the type system to statically
enforce authorisation policies on protocols written in Spi. The presentation of the calculus
and type system below closely follows [BHM08]. Some of the typing rules around encryp-
tion and decryption have to be weakened to make a translation to RCF possible.

2.1 Calculus

This section introduces the extensible Spi calculus from [AB05]. Table 2.1 introduces the
syntax of terms, while Table 2.2 introduces the syntax of processes. Their semantics are
given in [BHM08], but it isworthnoting that the out(M,N).P process is synchronous in this
calculus, whichmeans that P is only executed once themessage on the channel is received.
The let x = M in P construct was added by me and gives names to arbitrary terms and is
needed in Chapter 4.
Tables 2.3 and 2.4 list the constructors and destructors that will be used throughout this
thesis. Constructors are function symbols that are used to build terms. Destructors are
partial functions that can be applied to terms using the let process. In case the destructor
is not defined for the argument the let process has an else case.

Table 2.1 Syntax of terms
K,L,M,N ::= terms

a, b, c,m, n, k names
x, y, z, v, w variables
⟨M1, . . . ,Mn⟩ tuple
f(M1, . . . ,Mn) constructor application (f of arity n)

5



2.2. TYPE SYSTEM 6

Table 2.2 Syntax of processes
P,Q,R ::= processes

out(M,N).P output
in(M,x).P input
!in(M,x).P replicated input
new a : T.P restriction
P |Q parallel composition
0 null process
let x = g(M̃) then P else Q destructor evaluation
let ⟨x1, . . . , xn⟩ = M in P pair splitting
let x = M in P let binding
assume(C) assume formula
assert(C) expect formula to hold

Table 2.3 Constructors
I use the following constructors:
pk1 returns the corresponding public key for a private key
enc2 encrypts a message using a public key
vk1 returns the corresponding verification key for a signing key
sign2 signs a message using a signing key

Table 2.4 Destructors
I use the following destructors:
eq2 equality between two types
dec2 decrypts a message using a private key
check2 checks a signed message using a verification key

Their semantic is defined as follows: eq(M,M) ⇓ true
dec(enc(M, pk(K)),K) ⇓ M
check(sign(M,K), vk(K)) ⇓ M

2.2 Type system

This section presents the type system for the above calculus. There are some minor differ-
ences compared to [BHM08], which are reviewed in Subsection 2.2.2.
Table 2.5 lists the types of the type system, while Table 2.6 lists the typing judgements. The
type system uses a typing environment that contains name and variable bindings as well
as formulas. The well-formed environment judgement is defined in Table 2.7. The kinding
rules are given in Table 2.8, and the subtyping rules in Table 2.9. Kinding rules specify
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whether a type is public, tainted or both. Un is a supertype of every public types and a
subtype of every tainted type. A type, that is both public and tainted is equivalent to Un.
Tables 2.10 and 2.11 are devoted to the types of the constructors and destructors. Ta-
ble 2.12 defines the term typing judgement. Table 2.14 lists the rules for typing processes,
which are defined using the environment extraction relation (Table 2.13). The Rule (Proc-
Let) was added by me to type the newly added let x = M in P construct.

2.2.1 Robust safety

The main property of the type system is robust safety:

Definition 2.2.1 (Safety). A closed processP is safe if and only if for everyC andQ such that
P →∗ new ã : T̃ .(assert C |Q), there exists an evaluation context E = new b̃Ũ : .[ ] |Q′ such
thatQ ≡ E [assume C1 | . . . | assume Cn], fn(C)∩b̃ = ∅, andwe have that {C1, . . . , Cn} |= C .

Definition2.2.2 (Opponent). A closed process is anopponent if it does not contain any assert
and if the only type occurring therein is Un.

Definition 2.2.3 (Robust Safety). A closed process P is robustly safe if and only if P | O is
safe for every opponentO.

Theorem 2.2.4 (Robust Safety). For every closed process P , if Γ ⊢Un P then P is robustly
safe.

Proof. The proof is given in [BHM08].

2.2.2 Differences with respect to [BHM08]

To make a translation to RCF possible I need to weaken the type system from [BHM08] as
follows:

• The types of zero-knowledge proofs have been removed, as well as all related rules,
constructors and destructors.

• The types Signed and PubEnc have been removed, along with their rules. In the re-
spective constructors and destructors these types have been replaced with Un.

• The kinding rules for SigKey, VerKey, PubKey and PrivKey have been weakened and
need more preconditions.

This was necessary because the RCF calculus has no types for zero-knowledge and encryp-
tion and signing are expressed through seals. The typing rules in RCF for seals are weaker
than the rules for cryptographic types in [BHM08].
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Table 2.5 Syntax of types
T,U ::= types

Un
Private
Ch(T )
SigKey(T )
VerKey(T )
PrivKey(T )
PubKey(T )

⟨x̃ : T̃ ⟩{C}

Table 2.6 Typing Judgements
Γ ⊢ ⋄ well-formed environment
Γ ⊢ T :: k kinding, k ∈ {pub, tnt}
Γ ⊢ T <: U subtyping
f : (T1, . . . , Tn) 7→ T constructor typing
g : (T1, . . . , Tn) 7→ T destructor typing
Γ ⊢ M : T term typing
Γ ⊢ P well-typed process

Notation: Γ ⊢ J is used to denote a judgement where J ∈ {⋄, T :: k, T <: U,M : T, P}

Table 2.7Well-formed environment Γ ⊢ ⋄

Eēě-EĒĕęĞ
∅ ⊢ ⋄

Eēě-FĔėĒĚđĆ
Γ ⊢ ⋄ free(C) ⊆ dom(Γ)

Γ, C ⊢ ⋄

Eēě-BĎēĉĎēČ
Γ ⊢ ⋄ u /∈ dom(Γ) free(T ) ⊆ dom(Γ)

Γ, u : T ⊢ ⋄

Definition: dom(∅) = ∅; dom(Γ, C) = dom(Γ); dom(Γ, u : T ) = dom(Γ) ∪ {u}

Definition: forms(∅) = ∅; forms(Γ, C) = forms(Γ) ∪ {C}; forms(Γ, u : T ) = forms(Γ)

Definition: fn(ϕ) denotes the set of free names in any phrase ϕ, fv(ϕ) the set of free vari-
ables, and free(ϕ) the set of free names and variables.
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Table 2.8 Kinding (k ∈ {pub, tnt}) Γ ⊢ T :: k

KĎēĉ-Uē
Γ ⊢ ⋄

Γ ⊢ Un :: k

KĎēĉ-CčĆē
Γ ⊢ T :: pub Γ ⊢ T :: tnt

Γ ⊢ Ch(T ) :: k

KĎēĉ-TĚĕđĊ-PĚć
∀i. Γ ⊢ Ti :: pub Γ, x̃ : T̃ , C ⊢ ⋄

Γ ⊢ ⟨x̃ : T̃ ⟩{C} :: pub

KĎēĉ-TĚĕđĊ-Tēę
∀i. Γ ⊢ Ti :: tnt Γ, x̃ : T̃ , C ⊢ ⋄ forms(Γ, x̃ : T̃ ) |= C

Γ ⊢ ⟨x̃ : T̃ ⟩{C} :: tnt

KĎēĉ-SĎČKĊĞ
Γ ⊢ T :: pub Γ ⊢ T :: tnt

Γ ⊢ SigKey(T ) :: k

KĎēĉ-VĊėKĊĞ
Γ ⊢ T :: k

Γ ⊢ VerKey(T ) :: k

KĎēĉ-PĚćKĊĞ
Γ ⊢ T :: k

Γ ⊢ PubKey(T ) :: k

KĎēĉ-PėĎěKĊĞ
Γ ⊢ T :: pub Γ ⊢ T :: tnt

Γ ⊢ PrivKey(T ) :: k

Table 2.9 Subtyping Γ ⊢ T <: U

SĚć-PĚć-Tēę
Γ ⊢ T :: pub Γ ⊢ U :: tnt

Γ ⊢ T <: U

SĚć-RĊċđ
Γ ⊢ ⋄ free(T ) ⊆ dom(Γ)

Γ ⊢ T <: T

SĚć-TĚĕđĊ
∀i. Γ ⊢ Ti <: Ui Γ, x̃ : T̃ , C ⊢ ⋄ forms(Γ, x̃ : T̃ ) ∪ {C} |= C ′

Γ ⊢ ⟨x̃ : T̃ ⟩{C} <: ⟨x̃ : Ũ⟩{C ′}

SĚć-CčĆē-Iēě
Γ ⊢ T <:> U

Γ ⊢ Ch(T ) <: Ch(U)

SĚć-SĎČKĊĞ-Iēě
Γ ⊢ T <:> U

Γ ⊢ SigKey(T ) <: SigKey(U)

SĚć-VĊėKĊĞ-CĔě
Γ ⊢ T <: U

Γ ⊢ VerKey(T ) <: VerKey(U)

SĚć-PĚćKĊĞ-CĔē
Γ ⊢ U <: T

Γ ⊢ PubKey(T ) <: PubKey(U)

SĚć-PėĎěKĊĞ-Iēě
Γ ⊢ T <:> U

Γ ⊢ PrivKey(T ) <: PrivKey(U)
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Table 2.10 Typing Constructors f : (T1, . . . , Tn) 7→ U

pk : (PrivKey(T )) 7→ PubKey(T )

enc : (T,PubKey(T )) 7→ Un

vk : (SigKey(T )) 7→ VerKey(T )

sign : (T, SigKey(T )) 7→ Un

Table 2.11 Typing Destructors g : (T1, . . . , Tn) 7→ U

eq : (T, T ) 7→ Un

dec : (Un,PrivKey(T )) 7→ T

check : (Un,VerKey(T )) 7→ T

Table 2.12 Typing Terms Γ ⊢ M : T

Eēě
Γ ⊢ ⋄ u : T ∈ Γ

Γ ⊢ u : T

SĚć
Γ ⊢ M : T Γ ⊢ T <: T ′

Γ ⊢ M : T ′

CĔēĘęė
f : (T1, . . . , Tn) 7→ T ∀i ∈ [1, n]. Γ ⊢ Mi : Ti

Γ ⊢ f(M1, . . . ,Mn) : T

TĚĕđĊ
∀i ∈ [1, n]. Γ ⊢ Mi : Ti Γ, C{M̃/x̃} ⊢ ⋄ forms(Γ) |= C{M̃/x̃}

Γ ⊢ ⟨M1, . . . ,Mn⟩ : ⟨x1 : T1, . . . , xn : Tn⟩{C}

Table 2.13 Environment Extraction P  Γ

Eĝęė-NĊĜ
P  ΓP

new a : T.P  a : T,ΓP

Eĝęė-PĆė
P  ΓP Q ΓQ

P |Q ΓP ,ΓQ

Eĝęė-AĘĘĚĒĊ
assume(C) C

Eĝęė-EĒĕęĞ
P  ∅
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Table 2.14 Typing Processes Γ ⊢ P

PėĔĈ-OĚę
Γ ⊢ M : Ch(T ) Γ ⊢ N : T Γ ⊢ P

Γ ⊢ out(M,N).P

PėĔĈ-(RĊĕđ)-Iē
Γ ⊢ M : Ch(T ) Γ, x : T ⊢ P

Γ ⊢ [!]in(M,x).P

PėĔĈ-SęĔĕ
Γ ⊢ ⋄
Γ ⊢ 0

PėĔĈ-NĊĜ
T ∈ {Un,Ch(U), SigKey(U),PrivKey(U),Private} Γ, a : T ⊢ P

Γ ⊢ new a : T.P

PėĔĈ-PĆė
P  ΓP Γ,ΓP ⊢ Q Q ΓQ Γ,ΓQ ⊢ P

Γ ⊢ P |Q

PėĔĈ-DĊĘ
g : (T1, . . . , Tn) 7→ T ∀i ∈ [1, n]. Γ ⊢ Mi : Ti

Γ, x : T ⊢ P Γ ⊢ Q

Γ ⊢ let x = g(M1, . . . ,Mn) then P else Q

PėĔĈ-SĕđĎę
Γ ⊢ M : ⟨y1 : T1, . . . , yn : Tn⟩{C}

Γ, x1 : T1, . . . , xn : Tn, ⟨x1, . . . , xn⟩ = M,C{x̃/ỹ} ⊢ P

Γ ⊢ let ⟨x1, . . . , xn⟩ = M in P

PėĔĈ-LĊę
Γ ⊢ M : T Γ, y : T ⊢ P

Γ ⊢ let y = M in P

PėĔĈ-AĘĘĚĒĊ
Γ, C ⊢ ⋄

Γ ⊢ assume(C)

PėĔĈ-AĘĘĊėę
Γ ⊢ ⋄ forms(Γ) |= C

Γ ⊢ assert(C)
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2.3 Example

2.3.1 Informal Description

I will use this running example to illustrate the translation from protocol specification into
F# code and the corresponding intermediate steps:

Channel Public Alice Bob

c2 oo SigKey

c SigKey //

cm Message //

In the example protocol Alice sends a signedmessage to Bob after an initial key distribution
phase that is assumed trusted. To do this three channels are used, one message is sent on
each channel:

1. On c2 and c Alice sends her verification key. While c2 is a private channel to Bob, c is
public and allows a potential attacker to gain access to the key.

2. On cm Alice sends Bob a message that is signed. This channel is public.

Upon receiving the message from Alice, Bob verifies it is signed with Alice's verification
key.

2.3.2 Formalisation

This is the formalised version of the sample according to the calculus presented above:
new c : Ch(Un).
new c2 : Ch(VerKey(⟨x1 : Un⟩{Authentic(x1)})).
new cm : Ch(Un).
(

// Bob
in(c2, vkA).
in(cm,m).
letm1 = check(m, vkA) in
let ⟨m3⟩ = m1 in
assert(Authentic(m3))

|
// Alice
new sigA : SigKey(⟨x1 : Un⟩{Authentic(x1)}).
out(c2, vk(sigA)) |
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out(c, vk(sigA)) |
newm : Un.
(assume(Authentic(m))
| out(cm, sign(⟨m⟩, sigA)))

)

Execution begins by creating the three channels and executing Bob and Alice in parallel,
which are inlined in this version. Bob will block immediately until a message is ready on c2
and then on cm.
Alice in the mean time will create a signature key and send the corresponding verification
key to Bob. She will also send that key out on the public channel c to make it available to
everyone else. She will then create a message, sign it and send it to Bob on cm. She also as-
sumes themessage to beAuthentic as the signature key can only sign authenticmessages.
After receiving Alice's message Bob verifies it with her verification key and then assert that
it is Authentic. This assertion will always succeed because the verification guarantees that
the message was signed with the corresponding signature key, which is never leaked and
which only signs Authenticmessages. That is verified statically by the typechecker.
In this thesis I show how this protocol is translated into F# code that can be compiled and
run.



3 The RCF calculus

RCF is a calculus presented in [BBF+08]. It extends the core of F# with security type an-
notations. These can be used by the F7 typechecker to verify protocol implementations, F7
also removes these annotations and passes the resulting F# code to the F# compiler.
RCF stands for Refined Concurrent FPC and is basically the FPC argumented with concur-
rency and refinement types. FPC stands for Fixpoint Calculus [Gun92].
Table 3.1 gives the syntax of expressions and values. Their semantics are given in [BBF+08],
but it is worth noting that theM? expression is asynchronous in this calculus, whichmeans
that execution does not wait for themessage on the channel to be received. This is different
from Spi.
The try A catch _ → B expression is an addition byme because this construct is needed
during the translation of let x = g(M̃) then P else Q. The F# implementation supports this
construct so that it seems reasonable to add it to the calculus.
Tables 3.2, 3.3 and 3.4 give a list of types available in the RCF calculus. The disjoint sum type
and the iso-recursive type have no equivalent is Spi. Judgements are listed in Table 3.5. The
syntax of the typing environment is defined in Table 3.6 and the well-formed environment
judgement is given in Table 3.7.
Kinding and subtyping rules are listed in Tables 3.8 and 3.9. Tables 3.10 and 3.12 give the
typing rules for values and expressions while Table 3.11 lists the extraction rules. Fork and
the extraction rules are according to an earlier version of [BBF+08] because they are easier
to map to [BHM08].

Definition 3.0.1 (Forms in RCF). The function forms(E)maps an environmentE to a set of
formulas C1, . . . , Cn.

forms(E) ,


{C{y/x}} ∪ forms(y : T ) if E = (y : {x : T |C})
forms(E1) ∪ forms(E2) if E = (E1, E2)

∅ otherwise

Definition 3.0.2 (Free in RCF). fn(T ) denotes the set of free names in T , fv(T ) the set of free
variables, and free(T ) the set of free names and variables.
free(E) =

∪
{free(T )|(u : T ) ∈ E}

14
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Definition 3.0.3 (Dom in RCF). dom(E) is a the set of names and variables defined inE.
dom(∅) = ∅
dom(E, u : T ) = dom(E) ∪ {u}
dom(E,α :: k) = dom(E) ∪ {α}

Theorem 3.0.4 (Robust Safety). If ∅ ⊢ A : Un thenA is robustly safe.

Proof. The proof is given in [BBF+08].

Table 3.1 Syntax of values and expressions
a, b, c name
x, y, z variable
M,N ::= value

v name or variable
() unit
fun x → A function (scope of x isA)
(M,N) pair
inl M left construction of sum type
inr M right construction of sum type
fold M construction of recursive type

A,B ::= expression
M value
M N application
M = N syntatic equality
let x = A in B let (scope of x isB)
let (x, y) = M in A pair split (scope of x, y isA)
match M with h x → A else B constructor match (scope of x isA)
try A catch _ → B ifA fails executeB
(νa : T )A restriction (scope of a isA)
A � B fork
M !N transmission ofM on channel a
M? receive message off channel
assume C assumption of formula C
assert C assertion of formula C
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Table 3.2 Syntax of Types
H,T, U, V ::= type

unit unit type
Πx : T. U dependent function type (scope of x is U)
Σx : T. U dependent pair type (scope of x is U)
T + U disjoint sum type
µα.T iso-recursive type (scope of α is T )
α iso-recursive type variable
(T )chan channel type
{x : T | C} refinement type (scope of x is C)

{C} , {_ : unit | C} ok-type
bool , unit+ unit Boolean type

Table 3.3 Type Abbreviations
(T )SK , (T → Un) ∗ (Un → T ) Signing key
(T )DK , (T → Un) ∗ (Un → T ) Decryption key
(T )EK , (T → Un) Encryption key
(T )VK , (Un → T ) Verification key

Table 3.4 Un
Let a type T be public if and only if T <: Un
Let a type T be tainted if and only if Un <: T

Table 3.5 Judgments
E ⊢ ⋄ E is syntactically well-formed
E ⊢ T inE, type T is syntactically well-formed
E |= C formula C is derivable formE
E ⊢ T :: k inE, type T has kind k
E ⊢ T <: U inE, type T is a subtype of type U
E ⊢ A : T inE, expressionA has type T

Table 3.6 Syntax of Typing Environments
µ ::= environment entry

α :: k kinding
α <: α′ subtype (α ̸= α′)
a : (T )chan name (of channel type)
x : T variable (of any type)

E ::= µ1, . . . , µn environment
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Table 3.7Well-formed Environment

Eēě EĒĕęĞ
∅ ⊢ ⋄

TĞĕĊ
E ⊢ ⋄ free(T ) ⊆ dom(E)

E ⊢ T

Eēě EēęėĞ
E ⊢ ⋄ free(µ) ⊆ dom(E) dom(µ) ∩ dom(E) = ∅

E,µ ⊢ ⋄

DĊėĎěĊ
E ⊢ ⋄ free(C) ⊆ dom(E) forms(E) |= C

E |= C

Table 3.8 Kinding (k ∈ {pub, tnt}) E ⊢ T :: k

Let k satisfy pub = tnt and tnt = pub

KĎēĉ VĆė
E ⊢ ⋄ (α :: k) ∈ E

E ⊢ α :: k

KĎēĉ UēĎę
E ⊢ ⋄

E ⊢ unit :: k

KĎēĉ FĚē
E ⊢ T :: k E, x : T ⊢ U :: k

E ⊢ (Πx : T. U) :: k

KĎēĉ PĆĎė
E ⊢ T :: k E, x : T ⊢ U :: k

E ⊢ (Σx : T. U) :: k

KĎēĉ SĚĒ
E ⊢ T :: k E ⊢ U :: k

E ⊢ (T + U) :: k

KĎēĉ RĊĈ
E,α :: k ⊢ T :: k

E ⊢ (µα.T ) :: k

KĎēĉ CčĆē
E ⊢ T :: pub E ⊢ T :: tnt

E ⊢ (T )chan :: k

KĎēĉ RĊċĎēĊ PĚćđĎĈ
E ⊢ {x : T | C} E ⊢ T :: pub

E ⊢ {x : T | C} :: pub

KĎēĉ RĊċĎēĊ TĆĎēęĊĉ
E ⊢ T :: tnt E, x : T |= C

E ⊢ {x : T | C} :: tnt

The following rules for ok-types are derivable.

KĎēĉ OĐ PĚćđĎĈ
E ⊢ {C}

E ⊢ {C} :: pub

KĎēĉ OĐ TĆĎēęĊĉ
E ⊢ {C} E |= C

E ⊢ {C} :: tnt
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Table 3.9 Subtyping E ⊢ T <: U

SĚć PĚćđĎĈ TĆĎēęĊĉ
E ⊢ T :: pub E ⊢ T ′ :: tnt

E ⊢ T <: T ′

SĚć VĆė
E ⊢ ⋄ α ∈ dom(E)

E ⊢ α <: α

SĚć UēĎę
E ⊢ ⋄

E ⊢ unit <: unit

SĚć FĚē
E ⊢ T ′ <: T E, x : T ′ ⊢ U <: U ′

E ⊢ (Πx : T. U) <: (Πx : T ′. U ′)

SĚć PĆĎė
E ⊢ T <: T ′ E, x : T ⊢ U <: U ′

E ⊢ (Σx : T. U) <: (Σx : T ′. U ′)

SĚć SĚĒ
E ⊢ T <: T ′ E ⊢ U <: U ′

E ⊢ (T + U) <: (T ′ + U ′)

SĚć CčĆē
E ⊢ T <:> T ′

E ⊢ (T )chan <: (T ′)chan

SĚć RĊċĎēĊ LĊċę
E ⊢ {x : T | C} E ⊢ T <: T ′

E ⊢ {x : T | C} <: T ′

SĚć RĊċĎēĊ RĎČčę
E ⊢ T <: T ′ E, x : T |= C

E ⊢ T <: {x : T ′ | C}

The following rules for ok-types are derivable.

SĚć RĊċĎēĊ
E ⊢ T <: T ′ E, x : {x : T | C} |= C ′

E ⊢ {x : T | C} <: {x : T ′ | C ′}

SĚć OĐ
E, {C} |= C ′

E ⊢ {C} <: {C ′}
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Table 3.10 Rules for Values E ⊢ M : T

VĆđ VĆė
E ⊢ ⋄ (x : T ) ∈ E

E ⊢ x : T

VĆđ UēĎę
E ⊢ ⋄

E ⊢ () : unit

VĆđ FĚē
E, x : T ⊢ A : U

E ⊢ fun x → A : (Πx : T. U)

VĆđ PĆĎė
E ⊢ M : T E ⊢ N : U{M/x}

E ⊢ (M,N) : (Σx : T. U)

VĆđ Iēđ
inl : (T, T + U) E ⊢ M : T E ⊢ T + U

E ⊢ inl M : T + U

VĆđ Iēė
inr : (U, T + U) E ⊢ M : U E ⊢ T + U

E ⊢ inr M : T + U

VĆđ FĔđĉ
fold : (T{µα.T/α}, µα.T ) E ⊢ M : T{µα.T/α} E ⊢ µα.T

E ⊢ fold M : µα.T

VĆđ RĊċĎēĊ
E ⊢ M : T E |= C{M/x}

E ⊢ X : {x : T | C}

We can derive an introduction rule for ok-types:

VĆđ OĐ
E |= C

E ⊢ () : {C}

Table 3.11 Extraction Rules P  E

Eĝę Eĝĕ
A ∅

Eĝę RĊĘ
A E′

(νa : T )A (a : T,E′)

Eĝę FĔėĐ
A1  E1 A2  E2

A1 � A2  (E1, E2)

Eĝę LĊę
A1  E1

(let x = A1 in A2) E1

Eĝęė-AĘĘĚĒĊ
assume C  {C}



20

Table 3.12 Rules for Expressions E ⊢ A : T

Eĝĕ SĚćĘĚĒ
E ⊢ A : T E ⊢ T <: T ′

E ⊢ A : T ′

Eĝĕ Aĕĕđ
E ⊢ M : (Πx : T. U) E ⊢ N : T

E ⊢ M N : U{N/x}

Eĝĕ SĕđĎę
E ⊢ M : (Σx : T. U) E, x : T, y : U, _ : {(x, y) = M} ⊢ A : V {x, y} ∩ fv(V ) = ∅

E ⊢ let (x, y) = M in A : V

Eĝĕ MĆęĈč Iēđ Iēė FĔđĉ
E ⊢ M : T h : (H,T )

E, x : H, _ : {h x = M} ⊢ A : U x /∈ fv(U) E, _ : {∀x .h x ̸= M} ⊢ B : U

E ⊢ match M with h x → A else B : U

Eĝĕ EĖ
E ⊢ M : T E ⊢ N : U

E ⊢ M = N : {x : bool | b = True ↔ M = N}

Eĝĕ AĘĘĚĒĊ
E ⊢ ⋄ free(C) ⊆ dom(E)

E ⊢ assume C : {_ : unit | C}

Eĝĕ AĘĘĚĒĊ
E |= C

E ⊢ assert C : unit

Eĝĕ LĊę
E ⊢ A : T E, x : T ⊢ B : U x /∈ fv(U)

E ⊢ let x = A in B : U

Eĝĕ RĊĘ
E,A : (T )chan ⊢ A : U a /∈ fn(U)

E ⊢ (νa : (T )chan)A : U

Eĝĕ SĊēĉ
E ⊢ M : (T )chan E ⊢ N : T

E ⊢ M !N : unit

Eĝĕ RĊĈě
E ⊢ M : (T )chan

E ⊢ M? : T

Eĝĕ FĔėĐ
free(A1) ⊆ dom(E) A2  E2 E,E2 ⊢ A1 : unit
free(A2) ⊆ dom(E) A1  E1 E,E1 ⊢ A2 : T

E ⊢ (A1 � A2) : T

Eĝĕ TėĞ
E ⊢ A : T E ⊢ B : T

E ⊢ try A catch _ → B : T



4 A-Normal From

4.1 Overview

Because in RCF expressions are in an intermediate, reduced form [SF93], as a first step
of the code generation we need to eliminate nested constructors and constructors nested
inside destructors. Instead constructors will be bound to variables using let statements.
This translation is partial, in that, it does not translate formulas. So if constructors are used
in formulas there is no translation to A-NF defined and therefore no translation to RCF pos-
sible. The reason there is no translation in formulas is that the variables used by construc-
tors in formulas can be bound in the formula itself, for example by a quantifier. Even if there
is no quantifier the let statement would make an assume inactive in a Fork as there is no
environment extraction defined for let. Predicates and all the logical connections, however,
are supported and need no translation. I assume that the source and the target type sys-
tems employ the same authorisation logic. In practice first-order logic is used by both the
typecheckers of [BHM08] and [BBF+08].

4.2 Formalisation

4.2.1 Definitions

Definition 4.2.1 (Term Context). A term context is a term with a hole.
γ ::= [ ] | f(M1, . . . ,Mi−1, γ,Mi+1, . . . ,Mn) | ⟨M1, . . . ,Mi−1, γ,Mi+1, . . . ,Mn⟩

Definition 4.2.2 (Context application). Context application, denoted γ(M), replaces the
hole in γ with the given termM .
[ ](M) = M
f(M1, . . . ,Mi−1, γ,Mi+1, . . . ,Mn)(M) = f(M1, . . . ,Mi−1, γ(M),Mi+1, . . . ,Mn)
⟨M1, . . . ,Mi−1, γ,Mi+1, . . . ,Mn⟩(M) = ⟨M1, . . . ,Mi−1, γ(M),Mi+1, . . . ,Mn⟩

Definition 4.2.3 (Y-Function). The Y-Function extracts the innermost nested term from a
term and returns it along with the term context. If such a term does not exist the function is
undefined (partial).
Y : Terms 9 Term Context ∗ Term
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Y (f(x1, . . . , xn)) = ([ ], f(x1, . . . , xn)) Constructor applied to variables
Y (f(x1, . . . , xi,Mi+1,Mi+2, . . . ,Mn)) =

(f(x1, . . . , xi, γi+1,Mi+2, . . . ,Mn), Ni+1) if Y (Mi+1) = (γi+1, Ni+1)
Y (⟨x1, . . . , xn⟩) = ([ ], ⟨x1, . . . , xn⟩) Tuple applied to variables
Y (⟨x1, . . . , xi,Mi+1,Mi+2, . . . ,Mn⟩) =

(⟨x1, . . . , xi, γi+1,Mi+2, . . . ,Mn⟩, Ni+1) if Y (Mi+1) = (γi+1, Ni+1)

Lemma 4.2.4. If Y (M) = (γ,N) thenM = γ(N)

Proof. Follows from Definition 4.2.3.

Definition 4.2.5 (Process Context). A process context is a process with a top-level term hole.
K ::= out([ ],M).P | out(x, [ ]).P

| in(x, [ ]).P | !in(x, [ ]).P
| let x = g([ ]) then P else P ′

| let ⟨x1, . . . , xn⟩ = [ ] in P

Definition4.2.6 (ProcessContext application). Context applicationdenotedK(M) replaces
the hole inK with the given termM .
(out([ ], N).P )(M) = out(M,N).P
(out(x, [ ]).P )(M) = out(x,M).P
(in(x, [ ]).P )(M) = in(x,M).P
(!in(x, [ ]).P )(M) = !in(x,M).P
(let x = g([ ]) then P else P ′)(M) = let x = g(M) then P else P ′

(let ⟨x1, . . . , xn⟩ = [ ] in P )(M) = let ⟨x1, . . . , xn⟩ = M in P

Definition 4.2.7 (Z-Function). When the Y-Function is used I assume it is defined, otherwise
the Z-Function is not defined either. I omit the cases where the Z-Function is not defined.
Z : Processes 9 Process Context ∗ Term Context ∗ Term
Z(out(M,M ′).P ) = (out([ ],M ′).P, γ,N)
Z(out(x,M).P ) = (out(x, [ ]).P, γ,N)
Z(in(x,M).P ) = (in(x, [ ]).P, γ,N)
Z(!in(x,M).P ) = (!in(x, [ ]).P, γ,N)
Z(let x = g(M) then P else P ′) = (let x = g([ ]) then P else P ′, γ,N)
Z(let ⟨x1, . . . , xn⟩ = M in P ) = (let ⟨x1, . . . , xn⟩ = [ ] in P, γ,N)

where for each of the above cases holds that Y (M) = (γ,N)

Lemma 4.2.8. If Z(P ) = (K, γ,M) then P = K(γ(M))

Proof. Follows from Definition 4.2.7.



4.3. EXAMPLE 23

4.2.2 Translation

≪ P ≫ = let y = N in ≪ K(γ(y)) ≫
where Z(P ) = (K, γ,N) and y is fresh

Other cases (where Y ,Z is undefined):
≪ new a : T. P ≫ = new a : T. ≪ P ≫ , where T is in A-NF
≪ (P |Q) ≫ = (≪ P ≫ | ≪ Q ≫)
≪ 0 ≫ = 0
≪ assume(C) ≫ = assume(C), where C is in A-NF
≪ assert(C) ≫ = assert(C), where C is in A-NF
≪ out(x, y).P ≫ = out(x, y). ≪ P ≫
≪ in(x, y).P ≫ = in(x, y). ≪ P ≫
≪ !in(x, y).P ≫ = !in(x, y). ≪ P ≫
≪ let x = g(y1, . . . , yn) then P else P ′ ≫ = let x = g(y1, . . . , yn) then ≪ P ≫ else ≪ P ′ ≫
≪ let ⟨x1, . . . , xn⟩ = y in P ≫ = let ⟨x1, . . . , xn⟩ = y in ≪ P ≫

The intuition behind this translation is as follows: It starts at the top-level process, the be-
ginning of the Spi protocol. If the Z-Function yields a result, a new let is inserted which
assigns a variable to the extracted term. The term in the process is then replaced with
this variable. The process is repeatedly translated until no more terms can be extracted.
After that the continuation process is translated (other cases). Some processes do not con-
tain terms by their very nature (e.g. the parallel composition) and the Z-Function is not
defined for them. In these cases the translation is also continued with the continuation
process(es).

Definition 4.2.9 (Formulas in A-NF). A formulaC is in A-NF if and only if it does not contain
any constructors or destructors.

Definition 4.2.10 (Types in A-NF). A type T is in A-NF if and only if all formulas in the type
are in A-NF.

4.3 Example

The example protocol from Section 2.3 has the following normal form:
new c : Ch(Un).
new c2 : Ch(VerKey(⟨x1 : Un⟩{Authentic(x1)})).
new cm : Ch(Un).
(

// Bob
in(c2, vkA).
in(cm,m).
letm1 = check(m, vkA) in
let ⟨m3⟩ = m1 in
assert(Authentic(m3))
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|
// Alice
new sigA : SigKey(⟨x1 : Un⟩{Authentic(x1)}).
let th1 = vk(sigK) in
out(c2, th1) |
out(c, th1) |
newm : Un.
(assume(Authentic(m))
| let th2 = ⟨m⟩ in

let th3 = sign(th2, sigA) in
out(cm, th3))

)

The only differences compared to Section 2.3 are for Alice. First of all the verification key is
no longer constructed and sent at the same time. Rather the verification key is first assigned
to the temporary variable th1.
The same is true for the out process inside the parallel process: Rather than nesting the
constructors in the out process they are now each assigned to variables th2 and th3 using
a let process.

4.4 Proof

This proof will show that the translation to A-NF preserves typability.

Lemma 4.4.1 (Term Judgement).
H1

Γ ⊢ γ(M) : U ∧ x /∈ dom(Γ)⇒

∃T.
C1

Γ ⊢ M : T ∧
C2

Γ, x : T ⊢ γ(x) : U

Proof. We have Γ ⊢ γ(M) : U and need to show (C1): ∃T. Γ ⊢ M : T

case γ(M) = x: Γ ⊢ γ(M) : U ⇒ T = U

case γ(M) = f(x1, . . . , xi−1,M,Mi+1, . . . ,Mn)
Γ ⊢ f(x1, . . . ,M, . . . ,Mn) : U
f : (T1, . . . , Tn) → U ∀j. Γ ⊢ Mj : Tj

it follows: Γ ⊢ M : Ti

case γ(M) = ⟨x1, . . . , xi−1,Mi, . . . ,Mn⟩ similar
to show C2: Γ, x : T ⊢ γ(x) : U
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case γ = [ ]: [ ](x) = x choose T = U

case γ = f(M1, . . . ,Mi−1, [ ],Mi+1, . . . ,Mn)
we know f : (T1, . . . , Ti−1, T, Ti+1, . . . , Tn) 7→ U from H1
so Γ, x : T ⊢ f(M1, . . . ,Mi−1, x,Mi+1, . . . ,Mn) : U holds

case γ = f(M1, . . . ,Mi−1, γ,Mi+1, . . . ,Mn) induction on γ
case ⟨M1, . . . ,Mi−1, γ,Mi+1, . . . ,Mn⟩ as for constructors

Lemma 4.4.2 (Process Judgement).
H1

Γ ⊢ K(M) ∧ x /∈ dom(Γ)

⇒ ∃T.
C1

Γ ⊢ M : T ∧
C2

Γ, x : T ⊢ K(x)

Proof. For caseK = out([ ], N).P

By H1 we know to that (1) Γ ⊢ out(M,N).P holds. To show: (2)∃T.
C1

Γ ⊢ M : T and (3)
Γ, x : T ⊢ out(x,N).P

to show (2):
By (Proc-Out, given in Table 2.2) and (1) we know that Γ ⊢ M : Ch(T ′). I choose T =
Ch(T ′), which proves (2).
to show (3) by (Proc-Out):

• Γ ⊢ x : Ch(T ′): We know thatM must have type T = Ch(T ′) from (2). So x also has
type Ch(T ′).

• Γ ⊢ N : T ′: Holds by applying (Proc-Out) to (1).
• Γ ⊢ P : Holds by applying (Proc-Out) to (1).

The other cases are similar.

Theorem 4.4.3 (A-NF translation preserves typability). ∀Γ, P. Γ ⊢ P ⇒ Γ ⊢≪ P ≫

Proof. By induction on the number of nested constructors and tuples in P.
If the last appliedbranchof≪ P ≫ isZ(P ) = (K, γ,N) then≪ P ≫= let y = N in ≪ K(γ(y)) ≫

• I use induction on the translation until either Y or Z fails. This means no further
reduction is possible.

• By (Proc-Let) I then have to show that ∃T.
C1

Γ ⊢ N : T ∧
C2

Γ, y : T ⊢ K(γ(y))

• By Lemma 4.2.8 P = K(γ(N)), so the hyposesis rewrites to Γ ⊢ K(γ(N))

• I choose a fresh x and apply Lemma 4.4.2 to C2 which gives me ∃T ′.
C3

Γ ⊢ γ(N) : T ′ ∧
Γ, x : T ′ ⊢ K(x)
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• I choose a fresh y and apply Lemma 4.4.1 to C3 and obtain ∃T. Γ ⊢ N : T ∧Γ, y : T ⊢
γ(y) : T ′

• C1 is thereby shown, remains C2
• By Subsitution Lemma, Weakening and Strengthening: Γ, y : T ⊢ γ(y) : T ′ ∧ Γ, x :
T ′ ⊢ K(x) ⇒ Γ, x : T ′, y : T ⊢ (K(x)){γ(y)/x} = Γ, y : T ⊢ K(γ(y))

If the last applied branch of≪ P ≫ is a base case (i.e. Z(P ) is undefined) I use the IH.



5 Code generation

5.1 Overview

This section covers the Spi to RCF automatic code generation. I assume the Spi protocol to
be in A-NF as otherwise the translation is not defined.

5.2 Formalisation

5.2.1 Types

JUnK = UnJPrivateK = ({false})chanJCh(T )K = (JT K)chanJ⟨x̃ : T̃ ⟩{C}K =
∑

i∈1,n xi : JTiK.{C}JSK(T )K = JT KSKJVK(T )K = JT KVKJEK(T )K = JT KEKJDK(T )K = JT KDK
The translation ofmost types is straight forward as the same types exist inRCF. Additionally,
I require C and T to be in A-NF.
Private has no real equivalent, so I chose a channel that cannot transmit any messages, be-
cause the refinement type {false} can never be satisfied.
Tuples are expressed as ∑i∈1,n xi : Ti.{C}, which is a short form for Σx1 : T1. (Σx2 :
T2. . . . (Σxn : Tn. {C})). These aren nested pairs and the second element of the innermost
pair is a refinement type that carries C .

27
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5.2.2 Terms

JaK = aJxK = xJ⟨M1, . . . ,Mn⟩K = (JM1K, . . . , JMnK, ())Jf (M1, . . . ,Mn)K = f∗ (JM1K, . . . , JMnK)
where f : T1 . . . Tn 7→ T is a Spi constructor and
f∗ : (Π_ : (∑i∈1,n xi : JTiK). JT K)
is the corresponding function in RCF

The additional unit in the translation of a tuple is due to the fact that I translate the tuple
type with an additional element of type unit conveying the formula.
(M1, . . . ,Mn, ()) is a short form for nested pairs (M1, (M2, . . . , (Mn, ()))).

5.2.3 Processes

Jout(M,N).0K = JMK!JNKJin(M,x).P K = let x = JMK? in JP KJ!in(M,x).P K = bangIn (JMK, fun x → JP K)Jnew a : Ch(T ).P K = (νa : (T )chan)JP KJnew a : T.P K = let a = mkT () in JP K
if there ismkT : Π_ : unit. JT KJ(P |Q)K = JP K � JQKJ0K = ()Jlet ⟨xn−1, xn⟩ = M in P K = let (xn−1, zn−1) = M in let (xn, zn) = zn−1 in JP KJlet ⟨xi, xi+1, . . . , xn⟩ = M in P K = let (xi, zi) = M in Jlet ⟨xi+1, . . . , xn⟩ = zi in P K
where zi is a fresh variableJlet x = g(M̃) then P else QK = try let x = g∗ (JM1K, . . . , JMnK) in JP K catch _ → JQK
where g : T1 . . . Tn 7→ T is a Spi destructor and
g∗ : (Π_ : (∑i∈1,n xi : JTiK). JT K)
is the corresponding function in RCFJassume(C)K = assume CJassert(C)K = assert C

All types T must be in A-NF.
As Spi uses a synchronousout andRCFuses anasynchronousone the translationonlyworks
if the continuation process P is the Null-Process 0 as indicated above. Boudol provides a
way to encode synchronous messaging in an asynchronous calculus [Bou92], but this in-
volves passing channels as messages, which will not work very well in a practical imple-
mentation. I therefore require all Spi protocols to place the out inside a parallel composi-
tion.
The RCF calculus only has an expression to generate new channels. New values of other
types are generated by calling functions. These mkT functions will use the F# and .net
libraries to create an object of the appropriate type.
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The replicated input process in Spi hasnodirect representation inRCF, but canbe expressed
using a recursive function that is given below.
The tuple split needs a recursive translation as tuples are encoded as nested pairs. In the
last step there is an additional zn split off. This is the unit that was added when the nested
pair structure was created.
let is translated using a try statement. The idea behind that is that a destructor g can throw
an arbitrary exception to indicate that g is not applicable to the arguments M1 . . .Mn. In
this case the result ofQ is returned by the try.

BangIn

bangIn is a recursive procedure that can be expressed with the help of the fixpoint com-
binator, which can be implemented in RCF using self-application and then typed using a
recursive type. I give the types in ML notation for readability.
fix : ((α → β) → α → β) → α → β
bangIn : ((α)chan, (α → unit)) → β

This is the implementation for bangIn:
bangIn = fix (λb.λ(c, fp).let x = c? in

((fp x) � (b (c, fp))))
bangInwaits for input, runs fp for eachmessage that arrives and then waits for more input.
It never returns control to the caller.

5.3 Example

This is the automatic translation of the protocol from Section 4.3 using a very early version
of the code generator prototype. This prototype did not produce executable F# code, but
rather code that followed the RCF syntax.

type Predicates =
Authentic(string)

(νc:(Un)chan)
(νc2:((∑x1:Un.{Authentic(x1)})VK)chan)
(νcm:(Un)chan)
(
let vkA = c2?;
let m = cm?;
let m1 = check m vkA in
let m3 = fst m1 in
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let dummy1 = snd m1 in
let dummy2 = exercise dummy1 in
assert (Authentic(m3))

↱
let sigA = mkSK () in
let th1 = (vk sigA) in
c2!th1;
c!th1;
let m = mkUn () in
(
assume (Authentic(m))

↱
let th2 = (m, ()) in
let th3 = (sign th2 sigA) in
cm!th3

)
)

The translation is straight forward. The only slightly confusing aspect are the variables
called dummy* and the exercise function. This function does nothing and the variables are
never used. They are there because of the way the parser parses Spi files and as they have
no effect is no harm in leaving them in for the prototype.

5.4 Correctness Proof

I show that the translation from Spi to RCF preserves typability.
The proofs below are all backwards (i.e. goal-oriented). I will start every case by giving the
rule from Chapter 2 and then the statement I want to show, which is the translated form
of the conclusion of the Spi rule. I will prove each statement by by using appropriate rules
from RCF and eventually the hypothesises from the Spi rule that I know to be true.
In each paragraph I apply one rule from Chapter 3, the name of which I give in parenthesis.
In that paragraph I list the hypothesises that have to be fulfilled for that conclusion to hold.
If a hypothesis obviously holds I state this in parenthesis, otherwise I assign a number to
the hypothesis and refer to it in the next paragraph. Some rules may have more than two
hypothesis I which case I use a bulleted list.

Theorem 5.4.1 (Trans. Preserves Typing). ∀P∀Γ. Γ ⊢ P ⇒ ∃T. JΓK ⊢ JP K : T
Corollary 5.4.2 (Robust Safety of the Translation). If P is well-typed then J≪ P ≫K is
robustly safe.

Proof. Follows directly from Theorem 5.4.1 and Theorem 4.4.3 using Theorem 3.0.4.
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Before giving the proof for Theorem 5.4.1 some lemmas are required:

Lemma 5.4.3 (Forms-eq). forms(JΓK) = forms(Γ)

Proof. For each case equivalence can be shown trivially.

Lemma 5.4.4 (Free-Dom). Γ ⊢ J ⇒ free(J ) ⊆ dom(Γ)

Proof. Obvious from Tables 2.2 and 2.1.

Definition 5.4.5 (Environment translation).J∅K = ∅JΓ, x : T K = JΓK, x : JT KJΓ, CK = JΓK, _ : {C}

Lemma 5.4.6 (Dom-eq). dom(Γ) = dom(JΓK)
Proof. Induction on the length of Γ:

• Base case Γ = ∅: dom(∅) = dom(J∅K)
• Case Γ = (Γ′, C): dom(Γ′, C) = dom(Γ′), apply IH
• Case Γ = (Γ′, u : T ): dom(Γ′, u : T ) = dom(Γ′) ∪ {u}
dom(JΓ′, u : T K) = dom(JΓ′K, u : JT K) = dom(JΓ′K) ∪ {u}, apply IH

Lemma 5.4.7. Γ, C ⊢ ⋄ ⇒ free({C}) ⊆ dom(JΓK)
Proof. Follows from (Env-Formula, given in Table 2.7) and Lemma 5.4.6.

Lemma 5.4.8 (Environments). ∀Γ in A-NF. Γ ⊢ ⋄ then JΓK ⊢ ⋄

Proof. By induction on Γ ⊢ ⋄

Cases:
Eēě-EĒĕęĞ
∅ ⊢ ⋄

Γ = ∅ ⇒ JΓK = ∅ ⇒ JΓK ⊢ ⋄
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Eēě-FĔėĒĚđĆ
H1

Γ ⊢ ⋄
H2

free(C) ⊆ dom(Γ)

Γ, C ⊢ ⋄JΓ, CK = JΓK, x : {y : unit | C}, where x, y are fresh.
to show (by Env Entry):

• JΓK ⊢ ⋄ (by IH)
• free{x} ⊆ dom(JΓK) (by H2 + Lemma 5.4.6)
• dom(JΓK) ∩ dom(x : {y : unit | C}) = ∅ (because x is fresh)

Eēě-BĎēĉĎēČ
H1

Γ ⊢ ⋄
H2

u /∈ dom(Γ)
H3

free(T ) ⊆ dom(Γ)

Γ, u : T ⊢ ⋄

to show (by Env Entry):
1. JΓK ⊢ ⋄ (by IH)
2. free(u : JT K) ⊆ dom(JΓK)

⇐ free(u : JT K) = free(JT K) = free(T ) (by def of JT K)
∧dom(Γ) = dom(JΓK) (by Lemma 5.4.6)
∧free(T ) ⊆ dom(Γ) (by H3)

3. dom(u : JT K) ∩ dom(JΓK) = ∅
⇐ dom(u : JT K) = {u}
∧dom(JΓK) = dom(Γ) (by Lemma 5.4.6)
∧u /∈ dom(Γ) (by H2)

Lemma 5.4.9 (Kinding). ∀Γ, T, k. Γ ⊢ T :: k ⇒ JΓK ⊢ JT K :: k
k ∈ {pub, tnt}
Let pub = tnt and tnt = pub

Proof. By induction on Γ ⊢ T :: k

Cases:
KĎēĉ-Uē

Γ ⊢ ⋄
Γ ⊢ Un :: k

trivial from definition of Un
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KĎēĉ-CčĆē
H1

Γ ⊢ T :: pub
H2

Γ ⊢ T :: tnt

Γ ⊢ Ch(T ) :: k

follows from (Kind Chan) in Table 3.8

KĎēĉ-TĚĕđĊ-PĚć
H1

∀i. Γ ⊢ Ti :: pub
H2

Γ, x̃ : T̃ , C ⊢ ⋄
Γ ⊢ ⟨x̃ : T̃ ⟩{C} :: pub

to show: JΓK ⊢ ∑
i∈1,n xi : JTiK.{C} :: pub

it remains to show
(by Kind Pair) JΓK ⊢ JTiK :: pub (by H1 + IH) and (2) JΓK, x̃ : JT̃ K ⊢ {_ : unit | C} ::
pub

to show (2) (by Kind Refine Public) JΓK, x̃ : JT̃ K ⊢ unit :: pub and (3) JΓK, x̃ : JT̃ K ⊢
{_ : unit | C}

to show (3) (by Type) JΓK, x̃ : JT̃ K ⊢ ⋄ (by H2 + Weakening) and free({C}) ⊆
dom(JΓK, x̃ : JT̃ K) (by H2 and Lemma 5.4.7)

KĎēĉ-TĚĕđĊ-Tēę
H1

∀i. Γ ⊢ Ti :: tnt
H2

Γ, x̃ : T̃ , C ⊢ ⋄
H3

forms(Γ, x̃ : T̃ ) |= C

Γ ⊢ ⟨x̃ : T̃ ⟩{C} :: tnt

to show: JΓK ⊢ ∑
i∈1,n xi : JTiK.{C} :: tnt

it remains to show:
(by Kind Pair) JΓK ⊢ JTiK :: tnt (by H1 + IH) and (2) JΓK, x̃ : JT̃ K ⊢ {_ : unit |C} :: tnt

to show (2) (by Kind Refine Tainted) JΓK, x̃ : JT̃ K ⊢ unit :: tnt and JΓK, x̃ : JT̃ K |= C

⇐ it remains to show (Derive)
• JΓK, x̃ : JT̃ K ⊢ ⋄ (by weakening H2)
• free(C) ⊆ dom(JΓK, x̃ : JT̃ K) (by H2 and Lemma 5.4.7)
• forms(JΓK, x̃ : JT̃ K) |= C (by H3 and Lemma 5.4.3)

KĎēĉ-SĎČKĊĞ
H1

Γ ⊢ T :: tnt
H2

Γ ⊢ T :: pub

Γ ⊢ SigKey(T ) :: k

to show: JΓK ⊢ (T )SK :: k
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JSigKey(T )K = (JT K)SK = (JT K → Un) ∗ (Un → JT K)
Using (Kind Pair) and then (Kind Fun) on (JT K → Un) we get that T :: pub; from
(Un → JT K) we get that T :: tnt for (T )SK :: pub. It is the other way round for
(T )SK :: tnt.
So JT K has to be both pub and tnt. This follows from H1, H2 and IH.

KĎēĉ-PėĎěKĊĞ
Γ ⊢ T :: tnt Γ ⊢ T :: pub

Γ ⊢ PrivKey(T ) :: k

like SigKey

KĎēĉ-VĊėKĊĞ
Γ ⊢ T :: k

Γ ⊢ VerKey(T ) :: k

to show: JΓK ⊢ (T )VK :: kJVerKey(T )K = (JT K)VK = (Un → JT K)
(Kind Fun) is covariant for the result T

KĎēĉ-PĚćKĊĞ
Γ ⊢ T :: k

Γ ⊢ VerKey(T ) :: k

to show: JΓK ⊢ (T )DK :: kJPubKey(T )K = (JT K)DK = (JT K → Un)

(Kind Fun) is contravariant for the argument T

Lemma 5.4.10 (Subtyping). ∀Γ, T, T ′. Γ ⊢ T <: T ′ ⇒ JΓK ⊢ JT K <: JT ′K
Proof. By induction on Γ ⊢ T <: T ′

Cases:
SĚć-PĚć-Tēę
Γ ⊢ T :: pub Γ ⊢ U :: tnt

Γ ⊢ T <: U

to show: JΓK ⊢ JT K <: JT ′K
(by Lemma 5.4.9) we have that JΓK ⊢ JT K :: pub ∧ JΓK ⊢ JUK :: tnt
by applying (Sub Public Tainted) from Table 3.9 in F7, JΓK ⊢ JT K <: JT ′K follows.
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SĚć-RĊċđ
Γ ⊢ ⋄ free(T ) ⊆ dom(Γ)

Γ ⊢ T <: T

Refexivity of the RCF subtyping relation is claimed in Lemma 15 from [BBF+08]

SĚć-TĚĕđĊ
H1

∀i. Γ ⊢ Ti <: Ui

H2

Γ, x̃ : T̃ , C ⊢ ⋄
H3

forms(Γ, x̃ : T̃ ) ∪ {C} |= C ′

Γ ⊢ ⟨x̃ : T̃ ⟩{C} <: ⟨x̃ : Ũ⟩{C ′}

to show: JΓK ⊢ ∑
i∈1,n xi : JTiK.{C} <:

∑
i∈1,n yi : JT ′

i K.{C ′}

(by Sub Pair) ∀i. JΓK ⊢ JTiK <: JUiK (by H1+IH) and (2) JΓK, x̃ : JT̃ K ⊢ {_ : unit |C} <:
{_ : unit | C ′}

to show (2) (by Sub Refine Right) (3) JΓK, x̃ : JT̃ K ⊢ {_ : unit | C} <: unit and (4)JΓK, x̃ : JT̃ K, {C} |= C ′

to show (3) (by Sub Refine Left) (5) JΓK, x̃ : JT̃ K ⊢ {_ : unit | C} and JΓK, x̃ : JT̃ K ⊢
unit <: unit (by Sub Unit)
to show (5) (by Type) JΓK, x̃ : JT̃ K ⊢ ⋄ (by H2 + Weakening) and free({C}) ⊆
dom(JΓK, x̃ : JT̃ K) (by H2 and Lemma 5.4.7)
⇐ it remains to show (4) by (Derive)

• JΓK, x̃ : JT̃ K, {C} ⊢ ⋄ (by H2 + Lemma 5.4.8)
• free(C ′) ⊆ dom(JΓK, x̃ : JT̃ K, {C}) (implied by H3)
• forms(JΓK, x̃ : JT̃ K, {C}) |= C ′

⇐ forms(JΓK, x̃ : JT̃ K, {C}) = forms(JΓK, x̃ : JT̃ K) ∪ {C}
(by Lemma 5.4.3)= forms(Γ, x̃ : T̃ ) ∪ {C}
∧forms(Γ, x̃ : T̃ ) ∪ {C} |= C ′ (by H3)

SĚć-CčĆē-Iēě
Γ ⊢ T <:> U

Γ ⊢ Ch(T ) <: Ch(U)

follows from (Sub Chan) in Table 3.9

SĚć-SĎČKĊĞ-Iēě
H1

Γ ⊢ T <:> U

Γ ⊢ SigKey(T ) <: SigKey(U)JSigKey(T )K = (JT K)SK = (JT K → Un) ∗ (Un → JT K)
to show: JΓK ⊢ (JT K → Un) ∗ (Un → JT K) <: (JUK → Un) ∗ (Un → JUK)
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it remains to show:
(by Sub Pair) JΓK ⊢ (JT K → Un) <: (JUK → Un) and JΓK ⊢ (Un → JT K) <: (Un →JUK)
(by Sub Fun) we still need to show:

• JΓK ⊢ JUK <: JT K (by H1)
• JΓK ⊢ Un <: Un (by Refl)
• JΓK ⊢ JT K <: JUK (by H1)

SĚć-PėĎěKĊĞ-Iēě
Γ ⊢ T <:> U

Γ ⊢ PrivKey(T ) <: PrivKey(U)

Same as SigKey
SĚć-VĊėKĊĞ-CĔě

Γ ⊢ T <: U

Γ ⊢ VerKey(T ) <: VerKey(U)JVerKey(T )K = (JT K)VK = (Un → JT K)
(Sub Fun)→ is covariant for the result T
SĚć-PĚćKĊĞ-CĔē

Γ ⊢ U <: T

Γ ⊢ PubKey(T ) <: PubKey(U)JPubKey(T )K = (JT K)DK = (JT K → Un)

(Sub Fun)→ is contravariant for the argument T

Lemma 5.4.11 (Term Typing). ∀M∀Γ∀T. Γ ⊢ M : T ⇒ JΓK ⊢ JMK : JT K
Proof. By induction on Γ ⊢ M : T

Cases:
Eēě
H1
Γ ⊢ ⋄

H2
u : T ∈ Γ

Γ ⊢ u : T

to show: JΓK ⊢ u : JT K
equivalently we show: JΓK ⊢ ⋄ (by H1 and Lemma 5.4.8) and u : JT K ∈ JΓK (by H2
and Definition 5.4.5)
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SĚć
H1

Γ ⊢ M : T
H2

Γ ⊢ T <: T ′

Γ ⊢ M : T ′

to show: JΓK ⊢ JMK : JT ′K
by (Exp Subsum)

• JΓK ⊢ JMK : JT K (by H1+IH)
• JΓK ⊢ JT K <: JT ′K (by H2 and Lemma 5.4.10)

CĔēĘęė
H1

f : (T1, . . . , Tn) 7→ T
H2

∀i ∈ [1, n]. Γ ⊢ Mi : Ti

Γ ⊢ f(M1, . . . ,Mn) : T

to show: JΓK ⊢ f∗ JM1K . . . JMnK : JT K
I assume there is a function f∗ : (Π_ : (∑i∈1,n yi : JTiK). JT K) in RCF.
by (Exp Appl)

• JΓK ⊢ f∗ : (Π_ : (∑i∈1,n yi : JTiK). JT K)
• JΓK ⊢ JMiK : JTiK form (H2) by IH

TĚĕđĊ
H1

∀i ∈ [1, n]. Γ ⊢ Mi : Ti

H2

Γ, C{M̃/x̃} ⊢ ⋄
H3

forms(Γ) |= C{M̃/x̃}
Γ ⊢ ⟨M1, . . . ,Mn⟩ : ⟨x1 : T1, . . . , xn : Tn⟩{C}

to show: JΓK ⊢ (JM1K, . . . , JMnK, ()) : ∑i∈1,n xi : Ti.{C}

it remains to show
• (by Val Pair) JΓK ⊢ JMiK : JTiK (by H1 + IH) and
(2) JΓK ⊢ () : {_ : unit | C}{Mi/xi}i∈1,n

• to show (2) (by Val Refine) JΓK ⊢ () : unit and JΓK |= C{Mi/xi}i∈1,n

it remains to show (Derive)
• JΓK ⊢ ⋄ (by weakening H2 + Lemma 5.4.8)
• free(C{Mi/xi}i∈1,n) ⊆ dom(JΓK) (by H2 and Lemma 5.4.7)
• forms(JΓK) |= C{Mi/xi}i∈1,n (by H3 and Lemma 5.4.3)

Lemma 5.4.12 (Environment Extraction). ∀P. P  ΓP ⇒ JP K JΓP K
Proof. Induction over |P |
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Eĝęė-NĊĜ
H1

P  ΓP

new a : T.P  a : T,ΓP

to show (by Ext Res): JP K JΓP K (by IH+H1)
Eĝęė-PĆė

H1
P  ΓP

H2
Q ΓQ

P |Q ΓP ,ΓQ

to show (by Ext Fork): JP K JΓP K and JQK JΓQK (by IH+H1+H2)
Eĝęė-AĘĘĚĒĊ
assume(C) C

exactly what we want

Eĝęė-EĒĕęĞ
P  ∅

exactly what we want

Lemma5.4.13 (Unit-Return). Every translated process returns unit: ∀P,Γ. JΓK ⊢ JP K : unit
Proof. I show this below when typing the translated processes.

Proof for Theorem 5.4.1

With these lemmas we can now prove Theorem 5.4.1: Γ ⊢ P ⇒ JΓK ⊢ JP K : unit
Proof. By induction on Γ ⊢ P

Cases:
PėĔĈ-OĚę

H1

Γ ⊢ M : Ch(T )
H2

Γ ⊢ N : T Γ ⊢ 0

Γ ⊢ out(M,N).0

to show: JΓK ⊢ JMK!JNK : unit
to show (by Exp Send):

• JΓK ⊢ JMK : (JT K)chan (by H1 and Lemma 5.4.11)
• JΓK ⊢ JNK : JT K (by H2 and Lemma 5.4.11)
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PėĔĈ-Iē
H1

Γ ⊢ M : Ch(T )
H2

Γ, x : T ⊢ P

Γ ⊢ in(M,x).P

to show: JΓK ⊢ let x = JMK? in JP K : unit
to show (by Exp Let and Exp Recv)

• JΓK ⊢ M : (JT K)chan (by H1 and Lemma 5.4.11)
• JΓK, x : T ⊢ JP K : unit (by H2+IH and Lemma 5.4.13)
• x /∈ fv(unit)

PėĔĈ-RĊĕđ-Iē
H1

Γ ⊢ M : Ch(T )
H2

Γ, x : T ⊢ P

Γ ⊢ !in(M,x).P

translation: !in(M,x).P = bangIn (JMK, fun x → JP K)
to show (by Exp Appl):

• JΓK ⊢ bangIn : Π_ : (Σ_ : (JT K)chan. (Π_ : JT K. unit)). T ′ (by def of bangIn) I
choose T ′ to be unit.

• (1) JΓK ⊢ (JMK, fun x → JP K) : Σ_ : (JT K)chan. (Π_ : JT K. unit)
it remains to show (by Val Pair on (1))

• JΓK ⊢ JMK : (JT K)chan (by H1 and Lemma 5.4.11)
• (2) JΓK ⊢ fun x → JP K : Π_ : JT K. unit

by (Val Fun) on (2) it remains to show: JΓK, x : JT K ⊢ JP K : unit (by H2+IH and
Lemma 5.4.13)

PėĔĈ-SęĔĕ
H1

Γ ⊢ ⋄
Γ ⊢ 0J0K = ()

(by Val Unit) I need to show: JΓK ⊢ ⋄ (by H1+Lemma 5.4.8)

PėĔĈ-NĊĜ
T ∈ {Ch(U)}

H2
Γ, a : T ⊢ P

Γ ⊢ new a : T.P

to show: JΓK ⊢ (νa : (T )chan)JP K : unit
it remains to show (by Exp Res):
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• JΓK, a : (JT K)chan ⊢ JP K : unit (by H2+IH and Lemma 5.4.13)
• a /∈ fn(unit)

PėĔĈ-NĊĜ
T ∈ {Un, SigKey(U),PrivKey(U),Private}

H1
Γ, a : T ⊢ P

Γ ⊢ new a : TP

I take SigKey(U) as an example, the other cases are similar.
Translation: let a = mkSK () in JP K
To show (by Exp Let):

• (1) JΓK ⊢ mkSK () : (JUK)SK
• JΓK, a : (JUK)SK ⊢ P : unit (by H1+IH and Lemma 5.4.13)
• a /∈ fv(unit)

It remains to show (Exp Appl) on (1):
• JΓK ⊢ mkSK : (Π_ : unit. (JUK)SK) (by def ofmkSK)
• JΓK ⊢ () : unit

PėĔĈ-PĆė
H0

P  ΓP

H1
Γ,ΓP ⊢ Q

H1.5
Q ΓQ

H2
Γ,ΓQ ⊢ P

Γ ⊢ P |Q

to show: JΓK ⊢ JP K � JQK : unit
we need to show by (Exp Fork)

• free(JP K) ⊆ dom(JΓK) (by H2 and Lemma 5.4.4, ΓQ only contains formulas)
• JP K JΓP K (by Lemma 5.4.12 and H0)
• JΓK, JΓQK ⊢ JP K : unit (by H2 + IH and Lemma 5.4.13)
• free(JQK) ⊆ dom(JΓK) (by H1 and Lemma 5.4.4, ΓP only contains formulas)
• JQK JΓQK (by Lemma 5.4.12 and H1.5)
• JΓK, JΓP K ⊢ JQK : unit (by H1 + IH and Lemma 5.4.13)

PėĔĈ-DĊĘ
H1

g : (T1, . . . , Tn) 7→ T
H2

∀i ∈ [1, n]. Γ ⊢ Mi : Ti
H3

Γ, x : T ⊢ P
H4

Γ ⊢ Q

Γ ⊢ let x = g(M1, . . . ,Mn) then P else Q
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to show: JΓK ⊢ try let x = g∗ (JM1K, . . . , JMnK) in JP K catch _ → JQK : unit
I assume g∗ exists and g∗ : (Π_ : (∑i∈1,n yi : JTiK). JT K)
to show (by Exp Try):

• (1) JΓK ⊢ let x = g∗ M̃ in JP K : unit
• JΓK ⊢ JQK : unit (by H4+IH and Lemma 5.4.13)

remains to show (by Exp Let on (1)):
• (2) JΓK ⊢ g∗ M̃ : JT K
• JΓK, x : JT K ⊢ JP K : unit (by H3+IH and Lemma 5.4.13)
• a /∈ fv(unit)

remains to show (by Exp Appl on (2)):
• JΓK ⊢ g∗ : (Π_ : (∑i∈1,n yi : JTiK). JT K) (by def of g∗)
• JΓK ⊢ JM̃K : JT̃ K (by H2)

PėĔĈ-SĕđĎę
H1

Γ ⊢ M : ⟨y1 : T1, . . . , yn : Tn⟩{C}
H2

Γ, x1 : T1, . . . , xn : Tn, ⟨x1, . . . , xn⟩ = M,C{x̃/ỹ} ⊢ P

Γ ⊢ let ⟨x1, . . . , xn⟩ = M in P

As this translation is defined recursively I prove this case by induction on the length
of the tuple.
Base case: whereM : ⟨yn−1 : Tn−1, yn : Tn⟩{C}

to show: JΓK ⊢ let (xn−1, zn−1) = M in let (xn, zn) = zn−1 in JP K : unit
to show (by Exp Split):

• JΓK ⊢ M : Σyn−1 : Tn−1. (Σyn : Tn. unit) (by H1 + the way I translate tuples in
Subsection 5.2.1)

• (2) JΓK, xn−1 : Tn−1, zn−1 : (Σyn : Tn. unit), _ : {(xn−1, zn−1) = M} ⊢
let (xn, zn) = zn−1 in JP K : unit

• {xn−1, zn−1} ∩ fv(unit) = ∅ (obvious)
to show (2) (by Exp Split):

• JΓK, xn−1 : Tn−1, zn−1 : (Σyn : Tn. unit), _ : {(xn−1, zn−1) = M} ⊢ zn−1 : Σyn :
Tn. unit (obvious)

• JΓK, xn−1 : Tn−1, zn−1 : (Σyn : Tn. unit), _ : {(xn−1, zn−1) = M}, xn : Tn, zn :
unit, _ : {(xn, zn) = zn−1} ⊢ JP K : unit (by H2+IH and Lemma 5.4.13)
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• {xn, zn} ∩ fv(unit) = ∅ (obvious)

Recursive case: whereM : ⟨yi : Ti, yi+1 : Ti+1, . . . , yn : Tn⟩{C}

to show: JΓK ⊢ let (xi, zi) = M in Jlet ⟨xi+1, . . . , xn⟩ = zi in P K : unit
to show by (Exp Split):

• JΓK ⊢ M : Σyi : Ti. (
∑

j∈i+1,n yj : Tj .{C}) (by H1 + the way I translate tuples
in Subsection 5.2.1)

• JΓK, xi : Ti, zi : (
∑

j∈i+1,n yj : Tj .{C}), _ : {(xi, zi) = M}Jlet ⟨xi+1, . . . , xn⟩ =
zi in P K : unit (by H2 + Induction on the recursive case)

• {xi, zi} ∩ fv(unit) = ∅ (obvious)

PėĔĈ-AĘĘĚĒĊ
H1

Γ, C ⊢ ⋄
Γ ⊢ assume(C)

to show (by Exp Assume):
• JΓK ⊢ ⋄ (by H1 and Lemma 5.4.8)
• free(C) ⊆ dom(JΓK) (by H1 and Lemma 5.4.7)

The return type of assume C is {C}. To fulfil Lemma 5.4.13 we need a return type
unit. By (Sub Refine Left) {C} <: unit.

PėĔĈ-AĘĘĊėę
H1

Γ ⊢ ⋄
H2

forms(Γ) |= C

Γ ⊢ assert(C)

to show (by Exp Assert): JΓK |= C

it remains to show (Derive)
• JΓK ⊢ ⋄ (by H1 + Lemma 5.4.8)
• free(C) ⊆ dom(JΓK) (follows implicitly from H2)
• forms(JΓK) |= C (by H2 and Lemma 5.4.3)



6 Implementation

In the previous chapter I formalised a translation fromSpi to F# and showed that this trans-
lation preserves security.
To achieve this in practice I wrote a code generator that generates F# code from Spi. I
also made the typechecker from [BHM08] adjustable so that new types, constructors and
destructors can easily be added.

6.1 Extensible typechecker

The original version of the typechecker [BHM08] had all types, constructors, destructors,
kinding rules and so on hard coded. But since I needed a modified typechecker a more
general approach was needed.
The rules are now in a config file that specifies the types, their kinding and subtyping rules
as well as constructors and destructors and their typing. Instead of feeding the config file
to the typechecker at the same time as the protocol I took a two step approach.
In the first step the code of the typechecker is generated using a config file. This code gen-
erator, which has nothing to do with the code generator outlined in the next chapter, uses
template files and replaces certain sections with generated code. In a second step the gen-
erated typechecker is compiled using the OCaml compiler and yields a typechecker exe-
cutable. This typechecker can then be run on Spi protocols that adhere to the variant of the
calculus specified in the config file.
This approach has the advantage that the generated typechecker is checked by the OCaml
compiler and no refactoring of the typechecker was necessary.
A separate manual [Tar08c] for the code generation process of the typechecker is available
together with a development design document [Tar08b].

6.2 F# code generator

The F# code generator takes a Spi protocol and outputs two files: a .fs file and a .fs7 file.
The .fs file contains the implementation of the protocol and can be directly compiled by the
F# compiler. The .fs7 file contains an interface definition for the .fs file. Unlike a normal F#
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interface the .fs7 file may contain RCF specific types, especially refinement types. The F7
typechecker uses both the .fs and the .fs7 file to typecheck an F# module¹.
This separation between the typed interface and the implementation is a major difference
from the theoretical RCF that does not make such a distinction. The .fs file cannot contain
RCF specific types as it has to be fully compatible with the F# compiler. The .fs7 file on the
other hand can only talk about functions and not about local variables within functions.
This means that in order to enforce a certain type for a local variable I need to generate an
auxiliary function that returns this type.

6.2.1 Symbolic vs. Concrete

During compile time the code can be linked against two different libraries, both having the
same interface. The symbolic library does not do any actual cryptographic operations, but
rather hides objects in abstract types. However, it is useful for prototyping and debugging
and it can be verified by F7.
The concrete library on the other hand does perform the actual cryptographic operations
required by the protocol. It was not formally verified and one has to trust the .net/Windows
implementation of those functions. Additionally real cryptographic operations can only be
performed on byte streams, which means that objects need to be serialised and deseri-
alised. Even though the symbolic and concrete library have the same interface the concrete
one can cause run time exceptions where the symbolic one works just fine because of the
deserialisation and subsequent type casting.

6.2.2 Shortcomings of F7

In order for the .fs files to be fully compatible with the F# compiler they must not contain
any other F7 specific syntactic constructs. The current version of F7 therefore has some
shortcomings, which influence my code generation:

1. � does not exist in F7. The closest construct is Fork, which is not completely equiv-
alent to �. Fork requires a functions as an argument and environment extraction for
functions is not defined. In practice this means assumes in one branch of Fork do not
apply to the other branch. I work around this by extracting assumes out of the Fork
and put them in front of the Fork.

2. Tuples constructed in F# code do not carry the formulas that were attached to the
types of the tuple elements. Towork around this I have to create an auxiliary function
that specifies the tuple elements' types as arguments and the desired return type.

3. Auxiliary functions are needed to specify refinement types for local variables because
refinement types are not allowed in .fs files.

¹Every F# programme consists of one or more modules. Typically every .fs file represents one module.
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6.2.3 Details of the code generation

In this section I will give a high level overview on how the generation works. For more
details please refer to the Spi2RCF development design document [Tar08a].
The code generation works in a number of steps:

1. The protocol is first translated into A-NF. To achieve this I search for nested terms,
extract them into a new let, where I assign a fresh variable to the term, and replace
any occurrence of the term with the new variable.

2. Each predicate is translated into a data type with one constructor and as many argu-
ments as specified by the predicate arity.

3. The main process, which is denoted in the Spi protocol by the keyword “process”
(see Subsection 6.3.1), is translated. This translation does not generate any code but
returns the types of global variables.

4. A function is generated for each named process. The global variables obtained in
step 3 are passed as arguments if needed. The new functions are placed in the .fs file,
while the types of the arguments and return types are placed in the .fs7 file. Also in
this process auxiliary functions are generated towork around the shortcomings of F7
above.

5. In a last step the main process is translated again, this time the arguments of the
named processes are known and the code is finally output.

6.2.4 Restrictions

My code generator is currently a prototype and has some restrictions, that should be re-
solved in future versions:

• Currently only linking against the symbolic libraryworks; the concrete library causes
run time errors. The reason for this is, that on the F# side I rely solely on type infer-
ence by the compiler. In case of serialisation and deserialisation the resulting objects
have to be cast to the required type, which is done implicitly in F#. This cast, how-
ever, fails because the inferred type is not the same as the actual type of the object.
This can be fixed by making type annotations in the .fs file which may require type
inference at code generation time.

• Only global assumesmay contain formulas. Assumes in functionsmay only talk about
predicates. This is because the .fs files cannot contain formulas. For simplicity I re-
quire that global assumes have to be in a process called “policy” to be recognised.
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• Channels canonly transportmessagesof one type, even if the channel is of type (Un)chan.
This is because the F# compiler does not understand subtyping of Un and basically
treats it asα. One could work around this by serialising all data and have all channels
transport bytes.

• All variables in the Spi protocol have to have a unique name because the code gen-
erator ignores the scope of the variables. This can be overcome by making the code
generator aware of variable scopes.

6.3 Example

In Section 4.3 I presented the A-NF form of the example protocol. Then, in Section 5.3 I
presented the translation into RCF syntax.

6.3.1 The .spi file

The presentation of the example protocol in Section 4.3 uses the Spi syntax outlined in
Chapter 2. The input for the typechecker and the code generator looks different:

1 (** A very simple, one message protocol *)
2
3 predicate Authentic(*1*).
4
5 let bob =
6 in(c2, vkA);
7 in(cm, m);
8 let m1 = check(m,vkA) in
9 let <m3> = m1 in

10 assert (*#Authentic(m3)*).
11
12 let alice =
13 new sigA (*: SigKey(<x1:Un>[*#Authentic(x1)*]) *);
14 let th1 = vk(sigA) in
15 out(c2, th1)|
16 out(c, th1)|
17 new m (*: Un *);
18 (assume (*#Authentic(m)*)
19 | let th2 = <m(*=x*)>(*#Authentic(x)*) in
20 let th3 = sign(th2,sigA) in
21 out(cm,th3)).
22
23 process
24 new c (*: Ch Un *);
25 new c2 (*: Ch VerKey(<x1:Un>[*#Authentic(x1)*]) *);
26 new cm (*: Ch Un *);
27 (bob | alice)
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The main difference to notice here is that Alice and Bob are no longer inlined, but they are
given a name and later refered to by this name. The actual protocol starts at process. At
line 27 the protocol then executes Bob and Alice in parallel as if they were inlined.
Below are the two files that are output by the Spi2F# code generator when it translates the
above protocol:

6.3.2 The .fs file

1 #light "off"
2
3 // open some standard namespaces
4 open Spi
5 open Crypto
6 open Pi
7
8 type ('a) pAuthentic = Authentic of 'a
9

10
11 let bob cm c2 () =
12 let vkA = recv c2 in
13 let m = recv cm in
14 let m1 = verif vkA m in
15 let (m3,_) = m1 in
16 let (_,dummy1) = m1 in
17 let dummy2 = exercise dummy1 in
18 let _ = expect (Authentic(m3)) in
19 ()
20
21 let mkSigKey4 () = mkSigKey ()
22
23 let mkPair5 x = (x,())
24
25 let alice cm c c2 () =
26 let sigA = mkSigKey4 () in
27 let th1 = (vk sigA) in
28 let _ = send c2 th1 in
29 let _ = send c th1 in
30 let m = mkUn () in
31 let _ = assume (Authentic(m)) in
32 let th2 = (mkPair5 m ) in
33 let th3 = (sign sigA th2) in
34 let _ = send cm th3 in
35 ()
36
37 let mkCh6 () = mkCh ()
38
39 let mkCh7 () = mkCh ()
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40
41 let mkCh8 () = mkCh ()
42
43 let main () =
44 let c = mkCh6 () in
45 let c2 = mkCh7 () in
46 let cm = mkCh8 () in
47 let _ = Fork(
48 (fun () -> bob cm c2 ()),
49 (fun () -> alice cm c c2 ())
50 ) in
51 ()
52
53
54 ;;
55
56 let _ = main ()

The compiler instruction #light "off" is used to define the syntax the file uses. The open
statement opens the modules Crypto and Pi that are part of the F7 library, while Spi is
a module written by me that offers some additional functions. Spi has been verified with
the F7 typechecker.
The predicate Authentic has been translated into a data type with one argument of type
'a. This 'a can be a different type every time the data type is instantiated.
We can see here that Bob and Alice have been turned into functions and the main process
is called main and runs Bob and Alice in parallel. Line 56 ensures that the execution of the
compiled programme will start at main.
In line 15 Bob splits m1, which is a tuple of arity 1 in the Spi protocol. The reason is the
translation of tuples (Subsection 5.2.1) that always adds one more element of type unit at
the end.
The Assume in line 31 was previously inside a parallel process. It has been moved out
due to shortcoming 1 in Subsection 6.2.2. The Fork was then unnecessary and has been
removed.
The mkCh{6,7,8} functions are the auxiliary functions mentioned above. For the F# com-
piler they are useless as one could call mkCh directly, but they are needed in the F7 interface
file below to enforce F7 specific refinement types for the return values. The same is true
for mkSigKey4. mkPair5 returns a pair with a refinement type for the second element
6.3.3 The .fs7 file

1 // open some standard namespaces
2 open Spi
3 open Crypto
4 open Pi
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5
6 type ('a) pAuthentic = Authentic of 'a
7
8 val bob : cm:(Un) chan
9 -> c2:(((x1:Un*(foo:unit{Authentic(x1)}))) verifkey) chan

10 -> unit -> unit
11
12 val mkSigKey4 : unit -> ((x1:Un*(foo:unit{Authentic(x1)}))) SigKey
13
14 val mkPair5 : x:'a{Authentic(x)} -> (x:'a * (unit{Authentic(x)}))
15
16 val alice : cm:(Un) chan -> c:(Un) chan
17 -> c2:(((x1:Un*(foo:unit{Authentic(x1)}))) verifkey) chan
18 -> unit -> unit
19
20 val mkCh6 : unit -> (Un) chan
21
22 val mkCh7 : unit
23 -> (((x1:Un*(foo:unit{Authentic(x1)}))) verifkey) chan
24
25 val mkCh8 : unit -> (Un) chan
26
27 val main : unit -> unit

The opened modules and the predicate need to be repeated in the interface file.
Bob and Alice take the channels as arguments plus one additional unit and return unit. The
additional unit argument is not needed, but is added during the genration in case a function
has no other arguments. All arguments are given names in case a formula in a refinement
type refers to them. This is not the case in this example, however. Thesenameshavenothing
to do with the argument names in the .fs file. The code generator just reuses those names
here.
The function mkPair5 takes only one argument and creates a pair out of that. This is again
due to the way tuples are translated in Subsection 5.2.1; the last element always being a
refinement type.
Some of the auxiliary functions have a refinement type as a return type. This type could
not be given to a local variable in the .fs file so these functions are needed. As only the F7
typechecker sees this file all the mkCh functions are considered to return 'a chan for the
F# compiler. Auxiliary functions that do not have a refinement type are not needed, but are
generated anyway by the prototype.



7 Conclusion

7.1 Summary

This thesis contributes to secureprotocol implementationsbyallowingprotocols expressed
in the Spi calculus to be translated into F# code.
I presented a formal definition of this code generator and a proof that a protocol that type-
checks in Spi will also typecheck in F# using F7. This ensures that secrecy and authenti-
cation properties carry over. As an intermediate step of the translation to F# I defined a
normal form for Spi protocols and gave a translation from an ordinary Spi protocol to this
normal form. I also outlined the implementation of this translation that caused a number
of problems because RCF and the input required by F7 are different. The implementation
allows real code to be translated, typechecked and executed against the symbolic library.

7.2 Related work

This is not the first attempt to build a code generator for Spi. For instance, Pironti et al.
created a code generator from Spi to Java [PSD04, PS07]. Their spi2java code generator
is much more mature than my prototype and it can actually produce real-world protocol
implementations, like a working SSL client for example. However, they cannot guarantee
the generated code has the same security properties as the Spi protocol. They aim to be
as close to the protocol as possible with their code generation, but Java currently has no
security typechecker available. This work was recently extended in [Bus08] with a new
code generator named expi2java. Busenius adds a new type system featuring nested types,
and is more flexible, extensible, customisable and interoperable than spi2java.
During the code generation phase spi2java takes not just the Spi protocol as input, but an
XML config file as well. This config file can specify the classes to use for representation of
data types, as well as encryption/decryption parameters and serialisation/deserialisation
parameters. The generated code is then embedded in a template Java application.
A similar generator called ACG-C# was written by Jeon et al. in [JKC05]. ACG-C# requires
an additional step in which Casper translates an abstract protocol into a CSP script [RS01]
that is verified. The C# code is then generated from this CSP script. They have chosen C#
as a target because of the integrated .net code access security features.
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7.3 Future Work

Amain drawback of the translation defined in this thesis is that it is partial: formulas must
not contain any constructors and destructors at all, thismakes the automated translation of
a number of existing Spi protocols impossible. This is not trivial to resolve and will require
further investigation.
The main aim of a code generator is to generate protocol implementations compatible to
existing standards, just as spi2java and expi2java do today. There is still a lot missing from
my prototype to achieve this:
For one, messages cannot cross process boundaries, meaning server and client have to run
in the same process. To change this client and server need more information, for instance
a URI to connect to and a port to listen to.
In order to be interoperablewith existing protocol implementations the encoding to use for
data must be specified. At the same time the cryptographic functions need information on
which algorithm to use and how long keys are supposed to be. Some protocols may even
have a negotiation phase, which would need to be encoded in Spi.
The above could be solved using some config files and code templates that can be used
during the translation phase, as currently done by spi2java and expi2java.
Some information is, however, not available until runtime. Messages for example are cur-
rently just abstract units, but to be of any use they need to have content that is not known
at code generation time. Also a client usually needs a UI and a server needs some control
mechanism to shut it down. To provide this code, which is probably several times longer
than the generated code, at code generation time seems unpractical. I suggest compiling
the generated code into a DLL that can be used by any application that implements the pro-
tocol. The host application is not limited to F#, but can also be written in C# and many
other languages that support the CLI [ECM06].
Other aspects of the code generator not addressed in the prototype are efficiency and ex-
tensibility. To achieve the latter a plug-in architecture would be one possibility. Also some
script code could be fed to the code generator along with the Spi protocol.
Another area that was not addressed in my current work is zero-knowledge. In [BHM08]
zero-knowledge is part of the type systemand the typechecker candealwith zero-knowledge.
A translation of these types and processes would be an interesting addition to this work.
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