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Abstract

In this thesis we present a computer-aided programming approach to concurrency. Our approach

helps the programmer by automatically fixing concurrency-related bugs, i.e. bugs that occur

when the program is executed using an aggressive preemptive scheduler, but not when using a

non-preemptive (cooperative) scheduler. Bugs are program behaviours that are incorrect w.r.t.

a specification. We consider both user-provided explicit specifications in the form of assertion

statements in the code as well as an implicit specification. The implicit specification is inferred

from the non-preemptive behaviour. Let us consider sequences of calls that the program makes

to an external interface. The implicit specification requires that any such sequence produced

under a preemptive scheduler should be included in the set of sequences produced under a

non-preemptive scheduler.

We consider several semantics-preserving fixes that go beyond atomic sections typically

explored in the synchronisation synthesis literature. Our synthesis is able to place locks, barriers

and wait-signal statements and last, but not least reorder independent statements. The latter

may be useful if a thread is released to early, e.g., before some initialisation is completed. We

guarantee that our synthesis does not introduce deadlocks and that the synchronisation inserted

is optimal w.r.t. a given objective function.

We dub our solution trace-based synchronisation synthesis and it is loosely based on

counterexample-guided inductive synthesis (CEGIS). The synthesis works by discovering a

trace that is incorrect w.r.t. the specification and identifying ordering constraints crucial to trigger

the specification violation. Synchronisation may be placed immediately (greedy approach) or

delayed until all incorrect traces are found (non-greedy approach). For the non-greedy approach

we construct a set of global constraints over synchronisation placements. Each model of the

global constraints set corresponds to a correctness-ensuring synchronisation placement. The

placement that is optimal w.r.t. the given objective function is chosen as the synchronisation

solution.
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We evaluate our approach on a number of realistic (albeit simplified) Linux device-driver

benchmarks. The benchmarks are versions of the drivers with known concurrency-related bugs.

For the experiments with an explicit specification we added assertions that would detect the bugs

in the experiments. Device drivers lend themselves to implicit specification, where the device and

the operating system are the external interfaces. Our experiments demonstrate that our synthesis

method is precise and efficient. We implemented objective functions for coarse-grained and

fine-grained locking and observed that different synchronisation placements are produced for

our experiments, favouring e.g. a minimal number of synchronisation operations or maximum

concurrency.



vi

Acknowledgments

I would like to thank all those people who helped me in the last four years to finish this thesis.

First and foremost Thomas A. Henzinger whose advice proved invaluable to guide me along

the way. Despite his responsibilities as a president he always has time for his students. Pavol
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Chapter 1

Introduction

The main goal of this thesis is to introduce a technique for computer-aided programming where

the programmer is helped with the hardest aspect of concurrent programs: synchronisation.

A concurrent program allows several threads of statements to run at the same time. Such

programs typically require synchronisation to ensure threads do not interfere with each other.

Our technique helps the programmer by automatically repairing a concurrent program by adding

missing synchronisation to the source code.

1.1 Motivation

The recent interest in concurrency in both industry and academia stems from developments

in the CPU market. While the single-core performance has stagnated, the number of cores

in today’s CPUs is growing. This means programmers can only improve the performance of

their algorithms by parallelising them. A second motivation for concurrency is to ensure that

systems stay responsive even during long running computations. Even single-core systems

may create the illusion of running threads in parallel using time-sharing, i.e. quickly switching

between threads. Such a switch is called a context-switch. In this work we assume a single core

that uses frequent context-switches to run threads concurrently. The work would also apply to

a hypothetical multi-core system that guarantees sequential consistency of memory accesses.

Common multi-core systems today do not offer such guarantees, so that additional synthesis

steps would be required to enforce memory consistency.

However, implementing concurrent programs is difficult as it requires great care not to
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introduce errors due to missing synchronisation. Without synchronisation concurrent systems

offer no guarantee as to the relative progress between threads. We consider in this thesis shared-

memory concurrency, where each threads has a local state and read/write access to a shared state.

Other types of concurrency are discussed in Section 1.3. Lack of synchronisation may lead to an

unintended shared state if two threads manipulate the same variables concurrently. Such states

outside the specification are considered bugs.

Our work aims to discover and fix concurrency bugs. Concurrency bugs only occur because

of scheduler choices on the interleaving of threads. The stochastic nature of these bugs make

them hard to discover by traditional testing.

Techniques to automatically discover bugs have a long research history and are important

for critical applications, such as software used in the automotive or aviation industry. They are

also used in hardware design as replacing hardware is much more expensive. The term Formal

Methods is a term used to describe such techniques. They all have in common that a formal

specification is used to enable automatic bug discovery. Bug discovery methods for concurrent

programs range from the discovery of common bug patterns [Jin et al., 2012], race detection

[Savage et al., 1997] to software verification.

Software verification is a method to prove software conforms to its specification. It was

pioneered in the 60s with Floyd-Hoare triples [Floyd, 1967; Hoare, 1969] for manual verification,

and later automated using model checking [Clarke and Emerson, 1982; Queille and Sifakis,

1982]. To this day automated software verification remains a challenge because depending on

whether the state space is finite it is either undecidable or PSPACE-complete [Esparza, 1997;

Schnoebelen, 2002], meaning for real-world concurrent programs there is no efficient model-

checking algorithm available. This lead to the development of sound, but incomplete algorithms

that will find all bugs, but also return false-positives. In practice this leads to a huge number of

false-positive bug reports the programmer has to comb through. An example for a model-checker

that can deal with concurrent programs is CBMC [Clarke et al., 2004]. In our experience it

cannot verify programs with more than 400 lines of code and 5 threads in reasonable time.

We want to go one step further and not just discover concurrency bugs, but also assist

programmers in fixing these bugs automatically. The programmer would provide a program

that is sequentially correct and tested enough to ensure that there are no bugs in the sequential

execution. This is a reasonable assumption as programmers have developed and tested sequential

programs for decades. Our tool then finds concurrency bugs and automatically modifies the
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source code to eliminate the bug by adding synchronisation constructs.

This type of program repair is a form of synthesis. Traditional, functional synthesis, which

attempts to generate whole programs from specifications, goes back to the 60s [Green, 1969;

Waldinger and Lee, 1969]. Despite half a century of research, synthesis of full programs is still

out of reach. Our synthesis is less ambitious: We only aim to introduce isolated synchronisation

primitives into the code.

Our synthesis is based on verification: A verifier is used to find a bug in the program that we fix

using our synthesis. This means we inherit the disadvantages of automated program verification,

such as false-positives. In our case false-positives would lead to additional synchronisation,

which may negatively impact performance, but not introduce incorrect behaviour. In general,

introduction of synchronisation in the program code may cause deadlocks. This is a state where

some threads of the program are blocked indefinitely and the program cannot terminate. To

illustrate this, take the most common type of synchronisation primitive, locks, which ensure

that certain areas of the program are mutually exclusive. A thread tid1 trying to acquire a lock

currently held by thread tid2 has to wait for the lock to become available. If both threads try to

acquire a lock currently held by the other, none can make progress. This is a classic example for

a deadlock. In our synthesis we take care not to introduce deadlocks.

Finally, we envision a system where the programmer may write code completely ignoring

concurrency and the necessary synchronisation is automatically inserted using our synthesis

technique. While in this thesis we introduce all the needed techniques, they do not scale to

real-world programs.

Though our work is applicable to a wide variety of programs, we evaluated our imple-

mentation on Linux device drivers. Device drivers are a crucial pieces of code that facilitate

communication between the operating system and the hardware. They must inherently support

concurrency and a bug in a device driver is more devastating because it may cause the entire

system to crash.

1.1.1 Synthesis approach

We observe that programmers tend to take an iterative approach to bug fixing. After a bug is

discovered the programmer would typically try to reconstruct the control flow (trace) that lead

to the error and then mentally abstract the trace to narrow down the root cause of the bug. The
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program is then fixed by modifying the source code. Finally, testing is resumed until the program

is found to be correct.

We mimic this iterative approach in our synthesis, so in a sense our automatic approach

proceeds in the same way as a human programmer would. Each iteration checks if the program is

correct w.r.t. a formal specification. If it is incorrect a counterexample trace is produced. A trace

is a sequence of program statements that were executed. The trace contains information which

branches were taken and at which points the program makes context-switches. A counterexample

trace is a witness of a specification failure and we call such traces bad traces.

The original counterexample trace is then generalised to a set of bad traces. Intuitively

a larger set describes the root cause of the bug. Finally the program is refined by inserting

synchronisation into the code, such that the set of bad traces become infeasible. An infeasible

trace is one that cannot occur because of the semantics of the program. The generalisation is

therefore a crucial step in speeding up the process, because it ensures a whole set of bad traces is

removed from the program as opposed to just removing the original counterexample trace. The

synthesis algorithm continues in a loop finding new bad traces until the refined program is found

to be correct. We dub this approach trace-based synchronisation synthesis.

We consider two types of specifications: Explicit specification and implicit specification. An

explicit specification is provided by the programmer in addition to the actual program, typically

in the form of assertions. Assert statements contain an expression that needs to evaluate to true

whenever the execution reaches the assertion. If an assertion evaluates to false the trace leading

to it is considered a counterexample.

It is difficult for a programmer to provide a complete specification that will expose all

possible concurrency bugs. However, our problem set-up is suitable for an implicit specification.

For this we introduce two schedulers: A hypothetical non-preemptive scheduler that will not

switch threads except at specific preemption points and the real-world preemptive scheduler that

may switch threads at any point. Our implicit specification requires that the behaviour of the

program under the preemptive scheduler should be the same as executing the program under the

non-preemptive scheduler. For the implicit specification the counterexample is a trace that is

possible under the preemptive, but not under the non-preemptive scheduler.

In the literature the most common synchronisation primitives employed for concurrent

program repair are atomic sections. An atomic section is a sequence of adjacent statements

and no context-switch is allowed in between executing these statements. Atomic sections are
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a theoretical construct and not directly implementable. There exist techniques however to

convert them to locks [Cherem et al., 2008]. We focus on synchronisation primitives commonly

employed by programmers today, such as locks, barriers and wait-signal statements. A lock

marks several sections of statements that are mutually exclusive to each other. This makes them

weaker than atomic sections, which are exclusive w.r.t. to any part of the code. We also explore

the reordering of independent statements as an alternative to wait-signal statements. Reordering

produces more efficient code as it avoids the introduction of additional synchronisation primitives

that generally have a negative runtime impact. In our study in Section 3.5.1 we confirm that

reordering is a common fix for concurrency bugs in device drivers. For our work we assume a

sequentially consistent memory model where the CPU does not reorder statements.

1.1.2 Techniques introduced

In this thesis we present four approaches to trace-based synchronisation synthesis increasing

in sophistication. As mentioned above we investigated two kinds of specification: explicit and

implicit. For the explicit specification the programmer typically annotates the source code with

assertions and an off-the-shelve model-checker [Clarke et al., 2004] can be used to check the

program for correctness.

We start with this basic setup for our first implementation of the trace-based synchronisation

synthesis technique in Chapter 3. After the model-checker returns a trace we generalise it and

insert two kinds of synchronisation primitives to eliminate the bug. Firstly we try to reorder two

statements from the same thread in the source code. This eliminates bugs where one threads is

released too early. If that fails we place an atomic section in the code. While the model-checker

respects the semantics of atomic sections and confirms the final program is correct, the atomic

sections cannot be compiled to real machine code.

For statement reordering we consider only independent statements, so that swapping does not

affect the semantics of the thread. However, by reordering we may still introduce new bugs in

other threads that rely on the original ordering. Chapter 4 improves over the previous technique

by not just analysing counterexamples, but also learning from good traces. A good trace is

one that does not violate the specification. During our synthesis we use the model-checker to

generate both good and bad traces. When we eliminate bad traces using statement reordering we

guarantee that none of the observed good traces becomes bad. This means that w.r.t. to the good
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traces observed to this point we guarantee there are no regressions.

As atomic sections are not directly implementable in most commonly used programming

languages we improved our synthesis to generate common synchronisation primitives, such as

locks, barriers and wait-signals in Chapter 5. Synthesising a lock is more challenging because

it is exclusive only w.r.t. code in other threads protected by the same lock. We accomplish

this by employing a theorem prover to generalise the counterexample traces. Using the prover

we obtain a formula of ordering constraints that includes all bad traces of the program. This

formula may contain disjunctions and conjunctions, e.g. statement A has to happen before B or C

before D. We have patterns that match parts of these formulæ and each pattern corresponds to a

synchronisation primitive that eliminates the traces. While this changes the synthesis step we

still employ an off-the-shelf model-checker in a loop to find counterexample traces we analyse.

Finally, in Chapter 6 we move to an implicit specification: We require that the program

exhibits the same observable behaviour under the preemptive and the non-preemptive scheduler.

This can no longer be checked using an off-the-shelf model-checker; we develop an algorithm

based on automata language-inclusion. This works by translating the control-flow of the program

into two automata, a non-preemptive one that serves as the specification and a preemptive one

that represents all possible traces. The language-inclusion checks if all behaviours possible

under the preemptive automaton are also possible under the non-preemptive automaton. The

language these automata produce is the sequence of read/write access to the memory. If these

sequences are identical we know that the result computed is the same. We can relax the restriction

that they need to be identical because two reads or access to different memory loctions do not

interfere with each other. The synchronisation synthesis discovers critical sections in the same

way as in Chapter 5, but does not insert locks greedily. Only once all critical sections are known

our tool inserts locks into the source code. This allows us to optimise the lock placement, for

example preferring a minimal number of lock statements or to minimise the number of statements

protected by a lock. Depending on the platform and workload of the program one may be better

than the other in terms of performance.

1.2 Illustrative Example

For a very simple example we assume two threads that increment a shared variable x by 1. To

make things more interesting a variable y is assigned in both as well. The example is given in
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Figure 1.1 Example with two threads incrementing x

thread1

`1: l1 := x

`2: l11 := y

`3: x := l1 + 1

(a) Example

thread2

`A: l22 := y

`B: l2 := x

`C: x := l2 + 1

thread1

`1: read1(x)
`2: read1(y)
`3: write1(x)

(b) Abstraction

thread2

`A: read2(y)
`B: read2(x)
`C: write2(x)

Figure 1.1a.

Informally the programmer’s expectation is that x should have increased by 2 after execution

of both threads. Without loss of generality let us assume the initial value of x is 0. Without

synchronisation the following trace is possible and results in x = 1: `1 → `2 → `A → `B →

`C → `3. Intuitively the problem with this trace is that both threads read value 0 into their

thread-local variables (l1 and l2) and both write back 1 to x.

In order to analyse the trace we first need a formal specification. An explicit specification

could be a post-condition x = x′ + 2, where x′ is the original value and x is the value after both

threads completed. Though simple in this case in general it is difficult for the programmer to

come up with the exact specification that would detect all possible race-conditions.

Our implicit specification approach ensures that the preemptive execution of the program

is equivalent to the non-preemptive execution of the program. One way to define equivalence

is to require that the result of the calculation is identical [Bloem et al., 2014]. This approach

is not applicable to reactive systems and we therefore require that the interaction with the

environment is retained, so that for the environment the preemptive program appears to behave

the same as the non-preemptive program. For this example the environment is the shared memory

and the interactions are reads and writes. We relax the requirement that the order of memory

accesses needs to be exactly the same as the order of reads w.r.t. other reads is unimportant. The

same is true for accesses to different variables. In Figure 1.1b we present the abstract program

with the access to global variables. There are two traces possible under the non-preemptive

scheduler: thread1 followed by thread2 and the other way around. This results in two

possible sequences of memory accesses:

(1) read1(x)→ read1(y)→ write1(x)→ read2(y)→ read2(x)→ write2(x) and

(2) read2(y)→ read2(x)→ write2(x)→ read1(x)→ read1(y)→ write1(x)

Under a preemptive scheduler more sequences are possible. A sequence is considered within

the specification if it can be transformed into a sequence of the non-preemptive scheduler. As a
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transformation we allow that adjacent accesses can be swapped if they are independent. Accesses

are independent if they are both reads or if they refer to different variables. For example assume

that the scheduler starts with thread2 and then switches to thread1 after executing `A.

(3) read2(y)→ read1(x)→ read1(y)→ write1(x)→ read2(x)→ write2(x)

This sequence is within the specification, because it is equivalent to sequence (1). read2(y) is

independent w.r.t. all other accesses and be moved past the accesses of thread1. The sequence

(4) read2(y)→ read2(x)→ read1(x)→ read1(y)→ write1(x)→ write2(x)

is not within the specification as read2(x) and write1(x) are dependent and cannot be swapped.

This sequence corresponds to the bad trace `A → `B → `1 → `2 → `3 → `C. A trace is bad if it

violates the specification.

Trace generalisation. A bad trace is subsequently generalised to find the root cause of the

bug. We introduce different generalisation techniques in various chapters, which work on the

same principle: The sequence of events in the trace are seen as happens-before relations that

should be relaxed as long as all traces are still bad. We consider the following bad trace π:

`A → `B → `1 → `2 → `3 → `C. The trace can be represented by a happen-before formula:

f = hb(`A, `B) ∧ hb(`B, `1) ∧ hb(`1, `2) ∧ hb(`2, `3) ∧ hb(`3, `C)

where hb(x, y) describes all traces where x occurs before y. The formula f therefore represents

exactly our original bad trace. We can construct a larger formula f ′ that contains also the

happens-before relations that are implied by transitivity. For example hb(`A, `B) ∧ hb(`B, `1) also

implies hb(`A, `1). We have that

f ′ =
∧
{hb(`x, `y)|`x <π `y}

where `x <π `y denotes that `x appeared before `y in trace π.

The generalisation step consists of removing as many happens-before relations as possible

from f ′, such that all traces represented by the HB-formula are bad. For example if we remove

hb(`3, `C) from f ′, the HB-formula now represents two traces: the original π and the trace

`A → `B → `1 → `2 → `C → `3. As both traces are bad, removing hb(`3, `C) is a valid

generalisation. If we were to remove hb(`3, `C), hb(`2, `C), hb(`1, `C) f
′ would contain the trace
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Figure 1.2 Example with correct locks
thread1

lock(lk)
`1: l1 := x

`2: l11 := y

`3: x := l1 + 1
unlock(lk)

thread2

`A: l22 := y

lock(lk)
`B: l2 := x

`C: x := l2 + 1
unlock(lk)

`A → `B → `C → `1 → `2 → `3, which conforms to the specification. Therefore the constraint

hb(`1, `C) must be part of generalisation of f ′. The most general HB-formula that represents all

bad traces in the program is

f ′′ = hb(`1, `C) ∧ hb(`B, `3)

Informally this means that both threads have to read x before either thread writes to it.

Synchronisation synthesis. As f ′′ represents all bad traces, the negation represents all good

traces of the program.

¬f ′′ = hb(`C, `1) ∨ hb(`3, `B)

From this HB-formula we can infer a lock. The formula ¬f ′′ mandates that either the statement

`C happens before `1 or `3 happens before `B. This is exactly what a lock around `1, `2, `3 and

`B, `C enforces. The final program is shown in Figure 1.2.

1.3 Related Work

Concurrency

There are different notions of concurrency. First let us consider true concurrency as introduced

in Petri nets [Petri, 1962]. True concurrency places no restrictions on the order of events.

Mazurkiewicz traces [Mazurkiewicz, 1987] are partial-order traces used to describe the behaviour

of a concurrent system. The trace does not enforce an order between events that can occur

concurrently.

Contrary, interleaved concurrency describes a model where a scheduler orders the events.

One model are message-passing systems. A message passing system is a set of independent

processes that communicate with each other using one or more channels they send and receive

messages from. The messages on the channel synchronise the processes. Hoare introduced a
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first notation of message-passing concurrency: Communicating Sequential Processes [Hoare,

1978]. This evolved into the Calculus of Communicating Systems [Milner, 1980] and was later

extended to the π-calculus [Milner, 1992].

Shared-memory concurrency is another model of interleaved concurrency. We use this model

in this thesis as it is the model used by multi-threaded programs. It describes a system where

concurrently running processes communicate by accessing a common shared memory. This roots

back to [Dijkstra, 1968; Cadiou and Levy, 1973]. Traces of shared-memory concurrent programs

represent a total order over the events of all process.

Reasoning about concurrent programs. Software verification was pioneered in the 60s by

[Floyd, 1967] and [Hoare, 1969] who independently invented what is today known as the Floyd-

Hoare triples. Their research was based on earlier work in [McCarthy, 1960; McCarthy, 1962].

These triples essentially capture the semantics of a statement in an imperative program in a

formal way. For each possible program statement the corresponding triple defines a precondition

that must hold before executing the statement and a postcondition that is guaranteed to hold

afterwards. This was intended to construct manual proofs of a sequential program, which is,

however, only feasible for trivially small programs.

Verification was motivated by the need to reason systematically over concurrent programs.

Concurrent programs can have hard to identify bugs, such as race conditions, which makes it

desirable to reason about them systematically. A proof system for shared-variable concurrency

was developed in [Owicki and Gries, 1976] that can show non-interference of parallel threads

with respect to the correctness proof of the other threads.

Correctness specifications for concurrent programs. Up to that point all correctness prop-

erties of a program were expressed as propositional formulæ, which were proven to be invariants,

and termination conditions, which were proven using ranking functions. [Pnueli, 1977] and

later also [Lamport, 1980] proposed the use of temporal logic to express correctness conditions

of reactive systems. A reactive system runs indefinitely, accepting input and producing output.

Temporal logic is suitable to reason over reactive systems because it allows one to express condi-

tions that must be met in future states (as seen from the state currently under observation). This

shift was motivated by concurrent programs, for which a new class of properties was explored:

liveness properties. Liveness captures the notion that all threads of a program should be able
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to make progress eventually. If we consider critical sections for example, the safety property is

that no two threads may be inside the critical section at the same time. The liveness property

is that no thread may wait forever to enter the critical section (starvation). There exist several

variants of temporal logic, such as LTL (linear temporal logic), CTL (computational tree logic)

and CTL* (a combination of both).

Model checking

Owicki-Gries style proofs can be constructed by hand or automatically using a verification

condition generator and a theorem prover. In practice it turns out to be difficult to automatically

generate verification conditions for programs with loops or recursion.

[Clarke and Emerson, 1982] as well as [Queille and Sifakis, 1982] independently discovered

model checking, a procedure that can mechanically determine if a program with finitely many

states meets its temporal logic specification. They expressed the state space of a program as

a Kripke structure, named after its author [Kripke, 1963]. A Kripke structure is basically a

finite automaton where every state has a successor and a label is assigned to every state. This

process is called model checking because it checks if the Kripke structure is a model for the

temporal formula. If the check fails a counterexample is produced that we use for our synthesis.

The strength of the procedure is that it naturally lends itself to the verification of concurrent

programs. In sequential programs the only source of non-determinism is the input, making

systematic exploration of all branches a feasible option. Concurrent programs have an additional

source of non-determinism: The possible interleavings of concurrent processes. This space

cannot be explored easily by testing, making automated verification the preferred option. Both

sources of non-determinism lead to a so-called state explosion, meaning that the Kripke structure

is exponential in the size of the original program. This model checking approach was later

implemented in the EMC Model Checker [Clarke et al., 1983; Clarke et al., 1986].

State explosion due to inputs. The fact that the state explosion makes it infeasible to construct

a Kripke structure for complex programs gave birth to the idea of symbolic model checking.

In symbolic model checking a set of states is defined by a formula that represents the states.

Symbolic execution of a statement results in a new formula that represents the states the system

can be in after execution. This technique was pioneered by [McMillan, 1993], who implement it

in the SMV model checker. An important precondition for symbolic model checking is a suitable
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representation of formulæ. [Bryant, 1986] discovered Binary Decision Diagrams (BDDs) that

represent Boolean formulæ canonically and allow for inexpensive logical operations needed in

verification.

Symbolic model checking represents the set of states exactly which means that the formulæ

potentially have to track all program variables and the BDDs can grow exponentially. [Cousot

and Cousot, 1977] introduced the concept of abstract interpretation that can be used to abstract

states and reason about transitions on abstract states. The abstract state space is smaller, however

transitions are sound because they overapproximates the set of concrete states reachable. [Graf

and Saidi, 1997] implement this idea for a small process calculus and use the theorem prover

PVS to perform operations on the abstract domain.

While abstraction preserves soundness, it is incomplete: overestimating the reachable state

may lead to the erroneous conclusion that an error state is reachable. While Graf and Saidi

recognised this problem, they suggested that the algorithm is rerun with a different set of

predicates, leaving it to the user to refine the abstraction. [Clarke et al., 2000] and [Ball et al.,

2001] introduced automated abstraction refinement, where once the spurious counter-example

is discovered the abstraction is refined to eliminate the counter-example. In [Henzinger et al.,

2002] abstraction refinement was further improved to lazy abstraction. In lazy abstraction not the

entire program is reverified after an abstraction refinement, but only those parts that are affected

by the new predicates. This approach was implement in the BLAST model checker.

State explosion due to concurrency. In [Lipton, 1975] the concept of reduction was intro-

duced which can greatly simplify program proofs. Proving that certain parts of the program

behave the same whether they are interrupted or not allows us to reason about them as if they were

atomic sections. We use his notion of left- and right-movers in our work to test if a statements

interferes with another statement.

A number of techniques were developed to tackle the state explosion problem that occurs

due to concurrency. One is assume-guarantee reasoning [Jones, 1983; Henzinger et al., 2000],

which allows a modular approach to proving concurrent programs. This is essentially a divide

and conquer strategy where every concurrent process can be analysed separately assuming non-

interference from the other processes. Another approach is partial-order reductions [Godefroid

et al., 1996] that define an equivalence class of interleavings and for each class only one

representative interleaving is explored.
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In this thesis we use bounded model checking (BMC), where model checking is bounded

by some measure. BMC is unsound because it cannot guarantee the absence of bugs beyond

the bound, but it is still able to finding difficult bugs. [Biere et al., 2003] restrict the length

of the paths checked, which is increased whenever no error is found (up to a certain point).

Later [Qadeer and Rehof, 2005] proved BMC bounded by the number of context-switches to be

decidable for Boolean programs. Despite being unsound in general, empirically it was shown that

if there is no bug up to a sufficiently high bound the program is most likely bug-free [Musuvathi

and Qadeer, 2007]. We use a continuation of this work, that is implemented in the model checker

CBMC [Clarke et al., 2004]. CBMC uses SAT instead of BBDs to reason over states.

[Elmas et al., 2009] deal with the state explosion using a combination of abstraction and

reduction. These two are applied alternatingly to simplify the program. The abstraction overes-

timates the program’s behaviour while the reduction collapses several statements into a single

atomic block, thereby reducing the number of possible interleavings.

Bug summarisation

Verification techniques typically provide the user with a counterexample trace if the program

does not match the specification. Counterexamples of concurrent programs can be difficult to

understand as they typically contain a lot of spurious context-switches unrelated to the bug. Bug

summarisation techniques aim to present the user with easy to understand information, such

as classifying the bug (race condition, atomicity violation, two-stage access bugs, etc.) and

highlighting problematic context-switches or code sections that lead to the error.

Though this thesis focuses primarily on synthesis we also developed a bug summarisation

technique based on our trace generalisation technique from Chapter 5. Our tool is able to

present to the user a minimal set of required ordering constraints that will trigger the bug and

a bug classification. There is a number of prior work in fault localisation, error explanation,

counterexample minimisation and bug summarisation for concurrent programs.

In [Kashyap and Garg, 2008], the authors focus on shortening counterexamples in message-

passing programs to a set of “crucial events” that are both necessary and sufficient to reach the

bug. In [Jalbert and Sen, 2010], the authors introduce a heuristic to simplify concurrent error

traces by reducing the number of context-switches. There are several papers that survey and

classify common concurrency bug patterns [Farchi et al., 2003; Lu et al., 2008]. We can extend

our bug inference rules using the bug patterns from the papers. Finally, there is a large body of
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work on automatic detection of specific bugs such as data races and atomicity violations [Savage

et al., 1997; Engler and Ashcraft, 2003; Wang et al., 2010; Said et al., 2011].

Synthesis

Synthesis aims to produce code from a specification and has been studied for decades, but

remains a hard problem today.

Functional synthesis uses an input-output relation as a specification and was pioneered in

early work by [Green, 1969] and [Waldinger and Lee, 1969]. These approaches generally cannot

synthesise loops in the programs. A more recent approach by [Solar-Lezama et al., 2006] is

less ambitious and assumes the programmer provides the general program structure in addition

to the specification, so that only straight-line parts of the program are synthesised. This partial

synthesis proved to be more tractable in practice compared to the full program synthesis.

Reactive systems require a different specification because they do not terminate. The

synthesis question in the automata-theoretic framework was first asked in [Church, 1962] and

solved by [Rabin, 1972]. [Manna and Wolper, 1984] used temporal logics as a specification

and synthesised a communicating system. Finally, [Pnueli and Rosner, 1989] and [Ramadge

and Wonham, 1987] synthesised a reactive module from a temporal formula. They model the

synthesis as a game where player 1 tries to satisfy the specification and player 2 models the

environment and tries to violate the specification. The synthesis corresponds to finding a winning

strategy for player 1. Assume-guarantee synthesis [Chatterjee and Henzinger, 2007] synthesises

concurrent processes one-by-one by assuming the other process will work according to their

specification.

Program repair. Our synthesis is a form of program repair. Program repair takes as input a

program that almost conforms to the specification and minimally modifies the program to ensure

it is correct. The works [Jobstmann et al., 2005; Griesmayer et al., 2006; Samanta et al., 2008]

introduce program repair for sequential Boolean programs.

We target concurrent programs that lack appropriate synchronisation, which our synthesis

inserts. A large body of work deals with the repair of concurrent programs by inserting atomic

sections and fences [Clarke and Emerson, 1982; Vechev et al., 2009; Vechev et al., 2010a].

The approaches in [Clarke and Emerson, 1982; Vechev et al., 2009] were based on inferring

synchronisation by constructing and exploring the entire product graph or tableaux corresponding
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to a concurrent program. In [Vechev et al., 2009] the authors discuss a trade-off between

permissiveness and synchronisation cost. The synthesis, however, works by adding guards to

statements and the cost is the number of shared accesses in the guards. This is conceptionally

very different from the standard synchronisation primitives we introduce into the code. The

approach in [Vechev et al., 2010a] combines synthesis with abstraction refinement. If a program

violates the specification it may either be due to the abstraction not being precise enough or due

to an actual bug. Then either the abstraction is refined or an atomic section is inserted. Similar

to our method in Chapter 6 an atomicity constraint formula is derived for each faulty trace that

eliminates the context switches. The placement of atomic sections is delayed until no more

faulty traces are found (non-greedy approach). What is missing compared to our approach is

a trace generalisation step, that would let their synthesis loop terminate more quickly. We do

not implement abstraction refinement as it is part of the off-the-shelve verification tool we use

(except in Chapter 6). Further, our approach is able to synthesise real-world synchronisation

primitives, such as locks, barriers and wait-signals, as well as statement reordering. Using the

lock placement technique in [Cherem et al., 2008] atomic sections can be transformed into locks.

Nevertheless, that approach will lead to less fine-grained locking because in the lock placement

step the original specification that lead to the atomic sections being discovered is not longer taken

into account. In [Deshmukh et al., 2010], the authors present a technique that can directly infer

locks to ensure linearisability of concurrent libraries. The main difference from this previous

work is the added counterexample generalisation step that generalises counterexample traces to

formulæ of ordering constraints and eliminate them by inserting appropriate synchronisation. In

[Zhang and Wang, 2014] the authors devise a system that prevents harmful traces at runtime. In

contrast in this work we propose to add common synchronisation constructs to the source code

before compile time. A very recent program repair paper is [Khoshnood et al., 2015], which is

very similar to the technique we present in Chapter 5. Our technique was published earlier in

[Gupta et al., 2015]. All these techniques require an explicit user-provided specification in the

form of assertions or post-conditions. It is very hard for the user to ensure all race conditions

are discoverable by assertions. Our technique in Chapter 6 uses an implicit specification that

guarantees that the synthesised program behaves as if it were executed non-preemptively.

Our program repair algorithm considers the reordering of independent statements as an

alternative to placing wait-signal statements. Statement ordering has been studied before in [Solar-

Lezama et al., 2008] and [Vechev and Yahav, 2008], where the input is a partial order of a set
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of statements and the output of the synthesis is a total order of the statements. Our synthesis in

Chapter 3 accepts as input a buggy program, and we reorder statements to remove the bug (while

preserving the sequential semantics).

As an alternative to the above techniques [Jin et al., 2012] developed CFIX. It uses predeter-

mined patterns to detect concurrency bugs and a fixing strategy for each pattern of bug. CFIX

scales very well and was shown to work on real code bases, but it is not sound in that it cannot

find all concurrency bugs.

Trace generalisation

All our approaches use generalisation of counterexample traces to guide the synthesis. This

novel approach allows us to focus on traces that can be obtained easily from an off-the-shelve

verification tool and the generalisation helps us find the most general bug fix.

In verification, concurrent trace generalisation was used in [Sinha and Wang, 2010; Sinha

and Wang, 2011]; and in [Alglave et al., 2013] for detecting errors due to weak memory models.

In these works the bounded verification problem is encoded in SMT by encoding the data- and

control-flow. Generalisations of good traces was previously used in [Farzan et al., 2013b] to

create an inductive data-flow graph (iDFG) to represent a proof of program correctness. They do

not attempt to use iDFGs in synthesis.

In [Weeratunge et al., 2011] the authors develop a technique that is based on running the

program in a profile phase to gather positive behaviours (traces) and use them as a specification

for the synthesis. This has the advantage that the approach is much more scalable as positive

traces are cheap to find. The disadvantage is that it may overestimate the required atomicity

because some positive traces were not observed during the profiling phase.

Representations of trace sets. The encoding of trace sets used in Chapter 5 was introduced

in [Wang et al., 2009], and subsequently generalised in [Kahlon and Wang, 2010; Sinha and

Wang, 2011]. We derive from this encoding a succinct, explicit representation of traces using

formulæ over happens-before constraints. In other work, interference scenarios have been

proposed in [Farzan et al., 2013a] to represent concurrent executions that are behaviourally

equivalent under the same input values. For sequential programs, the authors in [Basu et al.,

2003] represent all counterexamples of recursive programs using pushdown automata.
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Implicit Specification

The concepts of sequential consistency, linearisablity and serialisability have been used as

implicit specifications. Sequential consistency and linearisablity are properties of a concurrent

datastructure that has a number of methods called from various threads. Sequential consistency

[Lamport, 1979] requires that every concurrent execution of the threads is equivalent to a

sequential interleaving of the method calls. Linearisability [Herlihy and Wing, 1990] is a

stronger constraint that also requires that the relative order of calls between threads is preserved.

Serialisability [Eswaran et al., 1976; Papadimitriou, 1986] is a term that originated in the

database world and describes a property of modern database systems that guarantee that for

every concurrent execution of a set of transactions there exists a sequential execution of those

transactions that results in the same state of the database.

There has been a body of work on using a non-preemptive (cooperative) scheduler as an

implicit specification. The notion of cooperability was introduced in [Yi and Flanagan, 2010].

They require the user to annotate the program with yield statements to indicate thread interference.

Then their system verifies that the yield specification is complete meaning that every trace is

cooperable. A preemptive trace is cooperable if it is equivalent to a trace under the cooperative

scheduler. While we abstract the program to variable reads and writes, [Yi and Flanagan, 2010]

uses Lipton’s notion of left- and right-mover to define equivalence between a preemptive and a

cooperating trace.

A recent paper [Bloem et al., 2014] uses implicit specifications for synchronisation synthesis.

While their specification is given by sequential behaviours, ours is given by non-preemptive

behaviours. This makes our approach applicable to scenarios where threads need to communicate

explicitly. Further, correctness in [Bloem et al., 2014] is determined by comparing values at

the end of the execution. In contrast, we compare sequences of events, which serves as a more

suitable specification for infinitely-looping reactive systems.
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Chapter 2

Formal Framework and Problem

Statement

We present the syntax and semantics of a concrete concurrent while languageW . WhileW (and

our tools) permits non-recursive function call and return statements, we skip these constructs in

the formalisation below. We conclude the section by formalising our notion of correctness for

concrete concurrent programs.

2.1 Concurrent Programs

In our work, we assume a read or a write to a single shared variable executes atomically and

further assume a sequentially consistent memory model.

2.1.1 Syntax ofW (Figure 2.1)

A concurrent program is a finite collection of threads 〈T1, . . . ,Tn〉 where each thread is a

statement written in the syntax ofW . Variables inW can be categorised into

• shared variables ShVar i,

• thread-local variables LoVar i,

• lock variables LkVar i,

• condition variables CondVar i for wait-signal statements,

• guard variables GrdVar i for assumptions and

• the special variable atomic_level.
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The LkVar i, CondVar i and GrdVar i variables are also shared between all threads. All variables

range over integers, except for guard variables that range over Booleans {false, true}. The

atomic_level variable keeps track how deeply nested the execution is inside atomic sections.

It is not a shared or local variable. It is increased by the semantics whenever an atomic section

starts and decreased when an atomic section ends. Atomic sections can be nested in the code.

Each statement is labelled with a unique location identifier `; we denote by stmt(`) the statement

labelled by `.

We use SV = {ShVar i|i ∈ N} to denote the set of shared variables, each LVi is the set of

local variables of thread Ti, and V = SV ∪
⋃
i LVi is the set of all variables. Let Vi = SV ∪LVi

denote the set of variables that can be read from and written by thread Ti.

The languageW includes standard sequential constructs, such as assignments, loops, condi-

tionals, and goto statements. Additional statements control the interaction between threads, such

as lock, wait/signal, and yield statements. InW , we only permit expressions that read from at

most one shared variable and assignments that either read from or write to exactly one shared

variable1.

The languageW supports both implicit and explicit specification. The two are not meant to

be used together. The assert statement is used to provide an explicit specification.

To allow an implicit specification the languageW has two statements that allow commu-

nication with an external system: input(ch) reads from and output(ch, ShExp) writes to a

communication channel ch. The channel is an interface between the program and an external

system. The external system cannot observe the internal state of the program and only observes

the information flow on the channel. The implicit specification requires that the interaction

observable to the external system is identical between the preemptive and non-preemptive ex-

ecution of the program. In practice, we use the channels to model device registers. A device

register is a special memory address, reading and writing from and to it is visible to the device.

This is used to exchange information with a device. In our presentation, we assume all channels

communicate with the same external system.

1An expression/assignment statement that involves reading from/writing to multiple shared variables can always
be rewritten into a sequence of atomic read/atomic write statements using local variables. For example the statement
x := x+ 1, where x is a global variable can be translated to l = x; x = l+ 1, where l is a fresh local variable.



21

Figure 2.1 Syntax ofW

LbStmt ::= Labelled Statement
` : stmt Statement annotated with a location
LbStmt1;LbStmt2 Sequence of statements

stmt ::= Statement
skip marks the end of the thread
ShVar := LoExp Assignment to shared variable
LoVar := ShExp Assignment to local variable
ShVar := havoc Assign non-deterministic value
ShVar := input(ch) Read a value from channel ch
output(ch,ShExp) Write value of ShExp to channel ch
if (ShExp) then LbStmt1 else LbStmt2 conditional
while (ShExp) LbStmt while loop
assert(ShExp) Assert ShExp evaluates to 6= 0
await(ShExp) Busy wait for ShExp to become 6= 0
lock(LkVar) Locks the mutex lock
unlock(LkVar) Unlocks the mutex lock
wait(CondVar) Waits for CondVar to be signalled
wait_not(CondVar) Waits for CondVar to be reset
signal(CondVar) Notifies condition variable
reset(CondVar) Resets condition variable
wait_reset(CondVar) Waits and resets in an atomic operation
assume(GrdVar) Assume guard to be true
assume_not(GrdVar) Assume guard to be false
GrdVar ← GrdExpr Assigns GrdVar the result of GrdExpr
yield Allow current thread to be descheduled
goto(`) Set the next statement to `
atomic_start/atomic_end Start/End an atomic section

LoExp ::= Local-variable expression
c Integer constant
LoVar Thread-local variable
op(LoExp1, . . . ,LoExpn) Operator application

ShExp ::= Shared-variable expression
LoExp Local-variable expression
ShVar Shared variable
op(ShVar ,LoExp1, . . . ,LoExpn) Operator application with shared variable

GrdExpr ::= Expression over guard variables
true/false Boolean constant
GrdVar Guard variable
boolop(GrdExpr1, . . . ,GrdExprn) Boolean operation
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2.1.2 Semantics ofW

We first define the semantics of a single thread inW , and then extend the definition to concurrent

non-preemptive and preemptive semantics.

Single-thread semantics (Figure 2.2). Let us fix a thread identifier tid . We use tid inter-

changeably with the program it represents. A state of a single thread is given by 〈V , `〉 where

V is a valuation of all program variables, and ` is a location identifier, indicating the statement

in tid to be executed next. A thread is guaranteed not to read or write thread-local variables of

other threads.

We define the flow graph Gtid for thread tid in a manner similar to the control-flow graph of

tid . Every node of Gtid represents a single statement (basic blocks are not merged) and the node

is labelled with the location identifier ` of the statement. The flow graph Gtid has a unique entry

node and a unique exit node. These two may coincide if the thread has no statements The entry

node is the first labelled statement in tid ; we denote its location identifier by firsttid . The exit

node is a special node corresponding to a hypothetical statement lasttid : skip placed at the end

of tid .

We define successors of events of tid using Gtid . The event last has no successors. We define

succ(`) = `′ if node ` : stmt in Gtid has exactly one outgoing edge to node `′ : stmt ′. Nodes

representing conditionals and loops have two outgoing edges. We define succ1(`) = `1 and

succ2(`) = `2 if node ` : stmt in Gtid has exactly two outgoing edges to nodes `1 : stmt1 and

`2 : stmt2. Here succ1 represents the then or the loop branch, whereas succ2 represents the else

or the loopexit branch.

We can now define the single-thread operational semantics. A single execution step 〈V , `〉 α−→

〈V ′, `′〉 changes the program state from 〈V , `〉 to 〈V ′, `′〉, while optionally outputting an observ-

able symbol α. The absence of a symbol is denoted using ε. The outputs are used only for the

implicit specification. In the following, e represents an expression and e[v/V [v]] evaluates an

expression by replacing all variables v with their values in V . We use V [v := k] to denote that

variable v is set to k and all other variables in V remain unchanged.

In Figure 2.2, we present the rules for single execution steps. Each step is atomic, no

interference can occur while the expressions in the premise are being evaluated. Note that every

expression may reference only one shared variable and all other variables must be thread-local.
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We use integer expressions for conditional and loop statements using the standard C interpretation

of 0 meaning false and all other integers meaning true. The only rules with an observable

output are:

1. HAVOC: Statement ` : ShVar := havoc assigns shared variable ShVar a non-deterministic

value (say k) and outputs the observable (tid , havoc, k, ShVar).

2. INPUT, OUTPUT: ` : ShVar := input(ch) and ` : output(ch, ShExp) read and write

values to the channel ch, and output (tid , in, k, ch) and (tid , out, k, ch), where k is the

value read or written, respectively.

Intuitively, the observables record the sequence of non-deterministic guesses, as well as the in-

put/output interaction with the tagged channels. The semantics of the synchronisation statements

shown in Figure 2.2 is standard. The lock and unlock statements do not count and do not allow

double (un)locking. There are no rules for goto and the sequence statement because they are

already taken care of by the flow graph.

The await(ShExp) statement is a busy-wait, short for while (ShExp) {}. The atomic start and

end statements atomically increment and decrement the atomic_level variable. This allows

for nested atomic sections to be handled correctly. A succeeding assertion (where the expression

evaluates to true) does not change the state except to advance the location identifier.

Concurrent semantics. A state of a concurrent program is given by 〈V , ctid, (`1, . . . , `n)〉

where V is a valuation of all program variables, ctid is the thread identifier of the currently

executing thread and `1, . . . , `n are the location identifiers of the statements to be executed next

in threads T1 to Tn, respectively. There are three additional states: 〈terminated〉 indicates

the program has finished, 〈failed〉 indicates an assertion failed and 〈invalid〉 indicates an

assumption failed. Initially, all integer program variables and ctid equal 0, all guard variables

equal false and for each i ∈ [1, n] : `i = firsti. We introduce a non-preemptive and a

preemptive semantics. The former is used as an implicit specification of allowed executions,

whereas the latter models concurrent sequentially consistent executions of the program.

Non-preemptive semantics (Figure 2.3). The non-preemptive semantics ensures that a single

thread from the program keeps executing using the single-thread semantics (Rule SEQ) until

one of the following occurs: (a) the thread finishes execution (Rule THREAD_END) or (b) it

encounters a yield, lock, wait or wait_not statement (Rule NSWITCH). In these cases, a context-

switch is possible, however, the new thread must not be blocked. We consider a thread blocked if
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Figure 2.2 Single-thread semantics ofW

stmt(`) = ShVar := LoExp LoExp[v/V[v]] = k

〈V, `〉 ε−→ 〈V[ShVar := k], succ(`)〉
ASSIGNMENT

stmt(`) = ShVar := havoc k ∈ Z

〈V, `〉 (tid ,havoc,k,ShVar)−−−−−−−−−−−−→ 〈V[ShVar := k], succ(`)〉
HAVOC

stmt(`) = ShVar := input(ch) k ∈ Z

〈V, `〉 (tid ,in,k,ch)−−−−−−−→ 〈V[ShVar := k], succ(`)〉
INPUT

stmt(`) = output(ch,ShExp) ShExp[v/V[v]] = k

〈V, `〉 (tid ,out,k,ch)−−−−−−−−→ 〈V, succ(`)〉
OUTPUT

stmt(`) = if (ShExp) then LbStmt1 else LbStmt2 ShExp[v/V[v]] 6= 0

〈V, `〉 ε−→ 〈V, succ1(`)〉
IF1

stmt(`) = if (ShExp) then LbStmt1 else LbStmt2 ShExp[v/V[v]] = 0

〈V, `〉 ε−→ 〈V, succ2(`)〉
IF2

stmt(`) = while (ShExp) LbStmt ShExp[v/V[v]] 6= 0

〈V, `〉 ε−→ 〈V, succ1(`)〉
WHILE1

stmt(`) = while (ShExp) LbStmt ShExp[v/V[v]] = 0

〈V, `〉 ε−→ 〈V, succ2(`)〉
WHILE2

stmt(`) = lock(LkVar) V[LkVar ] = 0

〈V, `〉 ε−→ 〈V[LkVar := tid ], succ(`)〉
LOCK

stmt(`) = unlock(LkVar) V[LkVar ] = tid

〈V, `〉 ε−→ 〈V[LkVar := 0], succ(`)〉
UNLOCK

stmt(`) = wait(CondVar)/wait_not(CondVar) V[CondVar ] = 1/0

〈V, `〉 ε−→ 〈V, succ(`)〉
WAIT/WAIT_NOT

stmt(`) = wait_reset(CondVar) V[CondVar ] = 1

〈V, `〉 ε−→ 〈V[CondVar := 0], succ(`)〉
WAIT_RESET

stmt(`) = signal(CondVar)/reset(CondVar)

〈V, `〉 ε−→ 〈V[CondVar := 1/0], succ(`)〉
SIGNAL/RESET

stmt(`) = assume(GrdVar)/assume_not(GrdVar)
V[GrdVar ] = true/false

〈V, `〉 ε−→ 〈V, succ(`)〉
ASSUME/ASSUME_NOT

stmt(`) = assert(ShExp) ShExp[v/V[v]] 6= 0

〈V, `〉 ε−→ 〈V, succ(`)〉
ASSERTION SUCCEEDING

stmt(`) = GrdVar ← GrdExpr GrdExpr [v/V[v]] = k k ∈ {true, false}
〈V, `〉 ε−→ 〈V[GrdVar := k], succ(`)〉

SET GUARD
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Figure 2.2 Single-thread semantics ofW (continued)

stmt(`) = await(ShExp) ShExp[v/V[v]] 6= 0 `′ = succ(`)

〈V, `〉 ε−→ 〈V, `′〉
AWAIT1

stmt(`) = await(ShExp) ShExp[v/V[v]] = 0

〈V, `〉 ε−→ 〈V, `〉
AWAIT2

stmt(`) = atomic_start V[atomic_level] = k `′ = succ(`)

〈V, `〉 ε−→ 〈V[atomic_level := k + 1], `′〉
ATOMIC START

stmt(`) = atomic_end V[atomic_level] = k k > 0 `′ = succ(`)

〈V, `〉 ε−→ 〈V[atomic_level := k − 1], `′〉
ATOMIC END

its current statement is to acquire an unavailable lock, to wait for a condition that is not signalled

or the thread reached the last event. We call yield, lock, wait and wait_not statements preemption

points. Note the difference between wait/wait_not and assume/assume_not. The former allow

for a context-switch while the latter transitions to the 〈invalid〉 state if the assume is not fulfilled

(rule ASSUME/ASSUME_NOT). A special rule exists for termination (rule TERMINATE), which

requires that all threads finished execution, all locks are unlocked and also that we are outside

any atomic section. If an assertion fails the execution transitions to the 〈failed〉 state (rule

ASSERTION FAILURE). The await statement causes a livelock in the non-preemptive semantics

if its condition is not fulfilled.

Preemptive semantics (Figure 2.3, Figure 2.4). The preemptive semantics of a program is

obtained from the non-preemptive semantics by relaxing the condition on context-switches, and

allowing context-switches at all program points. In particular, the preemptive semantics consist

of the rules of the non-preemptive semantics and the single rule PSWITCH in Figure 2.4. A

preemptive context-switch is only possible when outside an atomic section.

2.2 Executions and Traces

Let W denote the set of all concurrent programs inW .

Executions. A non-preemptive/preemptive execution of a concurrent program C in W is an

alternating sequence of program states and (possibly empty) observable symbols, S0`1S1 . . . `kSk,

such that
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Figure 2.3 Non-preemptive semantics

ctid = i 〈V, `i〉
α−→ 〈V ′, `′i〉

〈V, ctid, (. . . , `i, . . .)〉
α−→ 〈V ′, ctid, (. . . , `′i, . . .)〉

SEQ

ctid = i `i = lasti ctid′ ∈ {1, . . . , n} ¬blocked(`ctid′ ,V)
〈V, ctid, (. . . , `i, . . .)〉

ε−→ 〈V, ctid′, (. . . , `i, . . .)〉
THREAD_END

stmt(`i) = lock(lk)/wait(cv)/wait_not(cv)/wait_reset(cv)/yield
ctid = i ctid′ ∈ {1, . . . , n} ¬blocked(`ctid′ ,V)
〈V, ctid, (. . . , `i, . . .)〉

ε−→ 〈V, ctid′, (. . . , `i, . . .)〉
NSWITCH

∀i. `i = lasti ∀j. V[lkj ] = 0 V[atomic_level] = 0

〈V, ctid, (`1, . . . , `n)〉
ε−→ 〈terminated〉

TERMINATE

ctid = i stmt(`i) = assume(gv)/assume_not(gv) V[gv] = 0/1

〈V, ctid, (`1, . . . , `n)〉
ε−→ 〈invalid〉

ASSUME/ASSUME_NOT

ctid = i stmt(`i) = assert(ShExp) ShExp[v/V[v]] = 0

〈V, ctid, (`1, . . . , `n)〉
ε−→ 〈failed〉

ASSERTION FAILURE

blocked(`,V) = (stmt(`) = lock(LkVar) ∧ V[LkVar ] 6= 0)
∨ (stmt(`) = wait(CondVar) ∧ V[CondVar ] = 0)
∨ (stmt(`) = wait_not(CondVar) ∧ V[CondVar ] = 1)
∨ (stmt(`) = wait_reset(CondVar) ∧ V[CondVar ] = 0)
∨ (∃i : ` = lasti))

Figure 2.4 Additional rule for preemptive semantics

ctid′ ∈ {1, . . . , n} ¬blocked(`ctid′ ,V) V [atomic_level] = 0

〈V , ctid, (`1, . . . , `n)〉 ε−→ 〈V , ctid′, (`1, . . . , `n)〉
PSWITCH
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(a) S0 is the initial state of C,

(b) ∀j ∈ [0, k − 1]. Sj = 〈Vj, ctidj, (`1
j , . . . , `

n
j )〉,

(c) ∀j ∈ [0, k − 1], according to the non-preemptive/preemptive semantics of W , we have

`ctid = `j ∧ ∃α. Sj
αj+1−−→ Sj+1, and

(d) Sk is the state 〈terminated〉 or 〈failed〉.

Intuitively an execution must be valid w.r.t. the non-preemptive/preemptive semantics and

terminate in the end. An execution is good if it satisfies a given specification, and bad otherwise.

Traces. A trace is a sequence of location identifiers `1; . . . ; `n. We occasionally write tid0.`1;

. . . ; tidn.`n to highlight the thread of each statement. These two notations are equivalent as the

location identifiers are unique and each location identifier is associated with exactly one thread.

Alternatively, we also use → to separate location identifiers in a trace as in `1 → . . . → `n.

The language L(π) of a trace π = `1 . . . `n is the set of all executions S0`
′
1S1 . . . `

′
nSn+1 where

`i = `′i for i ∈ [1, n].

For any two events `i, `j ∈ locs(π), we say `i <π `j if `i occurs before `j in π. A trace π is

feasible if its language has at least one execution (i.e., L(π) 6= ∅), and is infeasible otherwise. A

feasible trace π is good if all executions in L(π) are good, and is bad otherwise.

We introduce the following functions that help us reason about traces and events:

Function Explanation

stmt(`) Returns the statement for event `

tid(`) Returns the thread identifier for `

locs(tid) Returns a set of location identifiers of all statements in thread tid

locs(π) Returns a set of events of trace π

If an event repeats in a trace due to loops it is tagged with its repetition number as in the

following example:

while(y) {

`1 : y := y− 1

}

`2 : y := 2

The trace `1
1; `2

1; `3
1; `2 repeats event `1 three times.
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2.2.1 Trace Neighbourhoods

We define equivalence classes over traces, called neighbourhoods. Since the trace is the result of a

program run, loops are unrolled a fixed number of times. This makes the relation < well-defined

for loops, as the events in the loop are tagged with their repetition number. The neighbourhood

Nπ of a trace π is a set of traces Nπ = {σ | locs(σ) = locs(π) ∧ ∀`i, `j ∈ locs(π). tid(`i) =

tid(`j) ∧ `i<π`j ⇒ `i<σ`j}. Intuitively, Nπ contains all traces having the same events as π and

having the same order of events within each thread. A trace in Nπ may be infeasible, good, or

bad. We denote the subsets of good and bad traces in Nπ by N g
π and N b

π , respectively. We call

N b
π and N g

π the bad and good neighbourhoods of π. The languages L(Nπ), L(N g
π ) and L(N b

π)

are the unions of the languages of all traces in Nπ, N g
π and N b

π , respectively. We say `i �N `j if

`i <π `j for all traces π in N. We use `i � `j if the neighbourhood is clear from the context.

Note thatNπ corresponds to a partial order (locs(π),v), with `i v `j iff `i<π`j and tid(`i) =

tid(`j). However, N g
π and N b

π do not, in general, correspond to a partial order.

Representation of concurrent trace sets. There are multiple ways to represent trace sets.

Some representations may be more expressive or useful for reasoning about concurrent programs

than others. A candidate representation that has been used for certain trace sets is a partial order

over events [Wang et al., 2009]. The neighbourhood of a trace, as defined above, can also be

represented as a partial order. However, the good neighbourhood or the bad neighbourhood of a

trace is, in general, not a partial order. In our work, we represent trace sets as HB-formulæ. An

HB-formula is a Boolean combination of happens-before causality constraints (`i < `j) between

events. HB-formulæ can represent arbitrary finite sets of finite traces, and in particular, good

and bad neighbourhoods. As we will see later, HB-formulæ are not only expressive, but also

versatile enough to be usable for diverse objectives.

We represent the sequence of events from thread T with location identifiers between ` and `′

(inclusive) by T[` : `′]. We also use the symbol L to denote location identifier ranges such as

` : `′.

Partial-order HB-formulæ and partial-order neighbourhoods. For our earlier techniques

we need to restrict HB-formulæ to those representing partial orders. We call an HB-formula a

partial-order HB-formula if it does not contain disjunctions (∨) or negations (¬). A partial-order

neighbourhood is a neighbourhood that can be represented using a partial-order HB-formula.
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For a partial-order neighbourhood Nπ, we use Nπ \ hb(A,B) to denote the neighbourhood Nπ
with the constraint hb(A,B) removed.

2.2.2 Representing Trace Neighbourhoods

Representing subsets of trace neighbourhoods. We represent subsets of trace neighbour-

hoods using happens-before formulæ, or, HB-formulæ. An HB-formula ϕ for a trace π is either a:

(a) basic constraint of the form hb(`i, `j) where `i, `j ∈ locs(π); or (b) a Boolean combination

of HB-formulæ, i.e., one of ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, or ¬ϕ1 where ϕ1 and ϕ2 are HB-formulæ.

The semantics [[ϕ]] of an HB-formula ϕ for a trace π is subset of Nπ, defined as follows:

(a) for a basic constraint hb(`i, `j), we have that [[hb(`i, `j)]] = {σ ∈ Nπ | `i <σ `j}; and (b) for

Boolean combinations, we have that [[ϕ1 ∧ ϕ2]] = [[ϕ1]] ∩ [[ϕ2]], [[ϕ1 ∨ ϕ2]] = [[ϕ1]] ∪ [[ϕ2]], and

[[¬ϕ1]] = Nπ \ [[ϕ1]], respectively.

In a slight abuse of notation we write `i < `j for hb(`i, `j).

Remark 2.2.1. Our HB-formulæ only represent constraints on scheduling. One could define

more expressive constraints which include constraints not just on scheduling, but also on variable

valuations in individual executions. However, our hypothesis is that happens-before constraints

on scheduling are sufficient to express many interesting properties of traces and executions. This

is also supported by empirical data that shows that most concurrency bugs are due to bad ordering

of statements in a trace rather than the interaction between schedules and variable valuations [Lu

et al., 2008].

2.3 Program Correctness and the Synthesis Problem

2.3.1 Explicit specification

We call an execution assertion-safe if the final state is not 〈failed〉. A program C is assertion-

safe if all executions are assertion-safe. Intuitively, a program is assertion-safe if no failing

assertion is reachable.

A trace π is called assertion-safe if all executions in L(π) are assertion-safe. Otherwise the

trace is called erroneous.
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2.3.2 Implicit specification

Observable behaviours. Let π be an execution of program C in W, then we denote with

ω = obs(π) the sequence of non-empty observable symbols in π. We use [[C]]NP , resp. [[C]]P , to

denote the non-preemptive, resp. preemptive, observable behaviour of C, that is all sequences

obs(π) of all executions π under the non-preemptive, resp. preemptive, scheduling.

We specify correctness of concurrent programs in W using two implicit criteria, presented

below.

Preemption-safety. Observable behaviours ω1 and ω2 of a program C in W are equivalent

if: (a) the subsequences of ω1 and ω2 containing only symbols of the form (tid , in, k, t) and

(tid , out, k, t) are equal and (b) for each thread identifier tid , the subsequences of ω1 and

ω2 containing only symbols of the form (tid , havoc, k, x) are equal. Intuitively, observable

behaviours are equivalent if they have the same interaction with the interface, and the same

non-deterministic choices (havoc) in each thread. For sets O1 and O2 of observable behaviours,

we write O1 b O2 to denote that each sequence in O1 has an equivalent sequence in O2.

Given concurrent programs C and C ′ in W such that C ′ is obtained by adding locks to C, C ′ is

preemption-safe w.r.t. C if [[C ′]]P b [[C]]NP .

We call a program correct if it is preemption-safe in case of implicit specification or if it is

assertion-safe in case of explicit specification.

2.3.3 Deadlock-freedom

A state S of concurrent program C in W is a deadlock state under non-preemptive/preemptive

semantics if

(a) the repeated application of the rules of the non-preemptive/preemptive semantics from the

initial state S0 of C can lead to S,

(b) S 6= 〈terminated〉,

(c) S 6= 〈invalid〉,

(d) S 6= 〈failed〉 and

(e) ¬∃S ′: 〈S〉 α−→ 〈S ′〉 according to the non-preemptive/preemptive semantics ofW .

Program C in W is deadlock-free under non-preemptive/preemptive semantics if no non-preemptive/

preemptive execution of C hits a deadlock state. In other words, every non-preemptive/preemptive
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Figure 2.5 Basic flow of trace-based synthesis

Input C C′ correct Output C′

Faulty trace

Generalised trace

Fixes

C′ ← C yes

no

generalise traces

infer fixes

modify C′

execution of C ends in state 〈terminated〉, 〈failed〉 or 〈invalid〉. The 〈invalid〉 state indic-

ates an assumption did not hold, which we do not consider a deadlock. We say C is deadlock-free

if it is deadlock-free under both non-preemptive and preemptive semantics.

Deadlocks are typically caused by two threads acquiring the same locks in different order

or a wait statement with no concurrent thread signalling. Note that the await statement may

introduce a livelock (but not a deadlock), i.e. 〈S〉 ε−→ 〈S〉 is possible forever while the program

makes no progress.

2.3.4 Synthesis Problem

In Chapters 3 to 6 we present solutions to various synchronisation synthesis problems, that are

all variants of the basic synchronisation synthesis problem: Given a concurrent program C in W,

the goal is to synthesise a new concurrent program C ′ in W such that:

(a) C ′ is obtained by adding synchronisation to C,

(b) C ′ is correct and

(c) C ′ contains no deadlocks not already present in C.

2.4 Trace-based Synthesis

Our synthesis algorithm is loosely based on counterexample guided inductive synthesis (CE-

GIS) [Solar-Lezama et al., 2006]. CEGIS works in a loop that iteratively proposes a candidate
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solution and then checks if the solution matches the specification. If this is the case the synthesis

algorithm found a correct solution and terminates. If the solution does not match the specification

a counterexample is produced that is used to refine the solution for the next loop iteration.

We call our synthesis algorithm the trace-based synchronisation synthesis. The algorithms

presented in Chapters 3 to 6 are variations of this basic synthesis algorithm.

Figure 2.5 shows the basic components of our basic algorithm. The input is the program C

that uses either implicit or explicit specification. The algorithm works in a loop that iteratively

refines the program C ′ (initially C ′ = C). The loop condition is whether C ′ is correct according to

the specification. For programs with explicit specification we can use for example an off-the-shelf

model-checker to test this. If C ′ is correct this it is returned and the algorithm terminates. If C ′

is incorrect the check will produce a faulty (counterexample) trace that explains the reason for

incorrectness, for example a failed assertion is reached. The goal of the synthesis is to eliminate

the buggy trace from C. The first step to eliminate the bug is generalisation of the buggy trace.

The goal of this step is to capture the “essence” of the bug. The trace may for example contain a

large number of context switches, but only few are actually required to trigger the bug. The last

step is to eliminate the bug by modifying C ′ such that the buggy trace and a set of similar traces

become impossible. This may be achieved for example by inserting locks to remove possibilities

for context switches.
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Chapter 3

Synthesis for an Explicit Specification

3.1 Problem Statement and Illustrative Examples

Our first technique focuses on a specific class of synchronisation bugs that can be fixed using

statement reordering, i.e., a rearrangement of program statements that changes the program’s

concurrent behaviour while preserving the sequential semantics of each thread. For example, a

pointer initialisation may be moved before a statement releasing another thread that dereferences

the pointer. We develop a technique for automating this type of transformation.

Our study of real-world concurrency bugs from device drivers shows that the most common

fix used for 28% of driver concurrency bugs is statement reordering and only 17% of bugs are

fixed using locks.

We also consider other semantics-preserving transformations inspired by practical bug-fixing

techniques. For example, the synthesis tool may repeat idempotent statements multiple times

(we give an example where duplicating an statement removes a concurrency bug). As a fall-back

option we place atomic sections to fix other concurrency bugs.

In this approach we generalise counterexample traces to partial-order neighbourhoods (see

Section 2.2.1). We first find a counterexample trace using an off-the-shelf tool, and then

generalise it to a partial-order neighbourhood. We achieve this generalisation by combining ideas

from Lipton reduction [Lipton, 1975] and error invariants [Ermis et al., 2012]. We relax the

ordering of a pair of statements in the trace if swapping these statements preserves error invariants

(and thus the bug can still be reached). Intuitively, the resulting partial-order neighbourhood

captures the ‘true cause’ of the bug. For instance, if the counterexample trace includes context



34

switches that are not necessary to reach the bug, these context switches will not be required by

the partial-order neighbourhood.

A key insight in our algorithm is that given a partial-order neighbourhood N of trace π, the

problem of eliminating N can be phrased as the problem of creating a minimal cycle in a graph

(representing the partial order neighbourhood) by adding new edges. A graph with a cycle does

not allow linearisation and hence a cycle corresponds to a set of transformations that together

eliminate N. The additional edges correspond to possible statement reordering or the insertion

of atomic sections. Each additional edge is labelled by a cost (for instance, the length of the

atomic section).

We implemented this techniques in a prototype tool called CONCURRENCYSWAPPER. As

specifications, we handle assertions, deadlocks, and generic conditions such as pointer use

before initialisation. However, our techniques apply to a larger class of reachability properties.

For finding buggy traces, we use the model checker Q [Q]. If Q produces a buggy trace,

CONCURRENCYSWAPPER generalises it to a partial-order neighbourhood, which it then tries to

eliminate first by statement reordering, and failing that, using an atomic section. Otherwise, the

current version of the driver is returned, with all the discovered bugs fixed.

We evaluated our tool on (a) five microbenchmarks that are simplified versions of bugs from

Linux device drivers, and (b) a simplified driver for the Realtek 8169 Ethernet controller. The

latter had 364 LOC, seven threads, and contained five bugs. In the experiments, we found that:

(a) bug finding and verification (in Q) dominates time spent generalising counterexamples, and

(b) using generalised counterexamples reduces the number of bug-finding iterations.

3.1.1 Illustrative Examples

Generalising buggy traces. In Figure 3.1a, thread1 and thread2 concurrently increment

x. The assertion states that x is 2 in the end. It fails in trace π ≡ A→ B→ 1→ C→ 2→ D→

3 → 4, where both threads read the initial x value 0, and then write back 1 to x. However, π

is just one trace exhibiting this bug. For example, swapping B and 1 in π gives another buggy

trace. Let �π be the HB-formula
∧
`i,`j

hb(`i, `j) iff statement `i occurs before `j in π. We

relax �π by removing all constraints hb(`i, `j) where stmt(`i); stmt(`j) has the same effect as

stmt(`j); stmt(`i). This gives us the HB-formula �1
π (shown in Figure 3.1c). All traces where

the execution order respects �1
π fail the assertion.
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Figure 3.1 Illustrative examples
init : x := 0; t1 := 0
thread1 thread2
A : l1 := x 1 : l2 := x

B : l1 := l1+ 1 2 : l2 := l2+ 1
C : x := l1 3 : x := l2

D : t1 := 1 4 : assert(¬t1 ∨ x = 2)

(a) Concurrent increment

init : IntrMask := 0; ready := 0; handled := 0
init_thread intr_thread
M : IntrMask := 1 R : assume(IntrMask = 1)
N : ready := 1 S : handled := ready

T : assert(handled)
(b) Interrupt handling
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(f) �θ

For C and 3, the sequence C; 3 is not equivalent to 3; C when l1 6= l2. However, in all traces

of �1
π, it can be seen that l1 = l2 = 1, and further, this is sufficient to trigger the bug. These

sufficient conditions to trigger bugs are error invariants. Using this information, we can further

relax �π to �1
π shown in Figure 3.1d, where the only constraints are that both threads read

x before either writes to it, and that D occurs before 4. A main component of our synthesis

algorithm is the generalisation of buggy traces to determine their root cause.

Atomic sections. We attempt to eliminate the bug represented by �π by adding atomic sections.

For example, adding an atomic section around 1, 2, and 3 in �1
π gives us �1+

π from Figure 3.1e,

where the atomic section is collapsed into a single node. Note that �1+
π represents an empty

neighbourhood, as there is a cycle of nodes [1; 2; 3] and C. Intuitively, the cycle implies that

[1; 2; 3] happens both before and after C, which is impossible. Hence, adding an atomic section

around [1; 2; 3] eliminates all traces represented by �1
π from the program. The atomic section

[1; 2; 3] does not eliminate the buggy trace A → [1; 2; 3] → B → C → D → 4. Analysing this

trace similarly, we find that another atomic section [A; B; C] is needed to obtain a correct program.

The number of bug fixing iterations can be reduced using error invariants [Ermis et al., 2012].
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For example, in �2
π, the atomic section [1; 2; 3] is not sufficient to create a cycle; instead, we

immediately see that both [1; 2; 3] and [A; B; C] are needed. The error invariant l1 = l2 allows

the partial order to be generalised further, removing the edge between C and 3 (Figure 3.1d).

This shows that error invariants help the synthesis by allowing more general partial orders to be

discovered.

Instruction reordering. The example in Figure 3.1b is inspired by a real bug from a Linux

device driver. Thread intr_thread runs when interrupts are enabled, i.e., IntrMask is 1,

and attempts to handle them; it fails if the driver is not ready. The init_thread enables

interrupts and readies the driver.

The bug is that interrupts are enabled before the driver is ready, for example, in trace

θ ≡ M→ R→ S→ N→ T. Note that statements M and N are independent, i.e., M; N is equivalent

to N; M. We construct an HB-formula from θ as before, but remove the constraint M �θ N, resulting

in Figure 3.1f (excluding the dashed edge). Adding the edge N→ M creates a cycle and eliminates

the bug. This edge changes the order of M and N, forcing the order N; M. This results in a correct

program with the driver ready to handle interrupts before they are enabled.

Following the ideas presented in this section, our synthesis algorithm works by generalising

counterexample traces to partial-order neighbourhoods and eliminating them using atomic section

insertion or statement reordering.

3.2 Semantics-preserving Transformations

We consider two kinds of transformations for fixing bugs:

• A reordering transformation θ = `1 ! `2 transforms program C to C ′ if location `1

immediately precedes `2 in C and `2 immediately precedes `1 in C ′ with everything else

unchanged. We only consider cases where the sequential semantics are preserved, i.e., if

(a) `1 and l2 are from the same basic block; and (b) `1; l2 is equivalent to `2; `1.

• An atomic section transformation θ = [`1; `2] transforms C to C ′ if neighbouring locations

`1 and `2 are in an atomic section in C ′, but not in C.

We write C θ1...θk−−−→ C ′ if applying each of θi in order transforms C to C ′. We say transformation θ

acts across preemption points if either θ = `1 ! `2 and one of `1 or `2 is a preemption point; or

if θ = [`1; `2] and `2 is a preemption point.
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Given a program C, we define program constraints to represent sets of programs that can be

obtained through applying program transformations on C.

• Atomicity constraint: Program C ′ |= [`i; `j] if `i and `j are in an atomic block.

• Ordering constraint: Program C ′ |= `i v `j if `i and `j are from the same basic block and

either `i occurs before `j , or C ′ satisfies [`i; `j].

If C ′ |= Φ, we say that C ′ satisfies Φ. Further, we define conjunction of Φ1 and Φ2 by letting

C ′ |= Φ1 ∧ Φ2 ⇐⇒ (C ′ |= Φ1 ∧ C ′ |= Φ2). We define implication as C ′ |= Φ1 =⇒ Φ2 ⇐⇒

(C ′ |= Φ1 =⇒ C ′ |= Φ2) and its negation as C ′ |= Φ1 /=⇒ Φ2 ⇐⇒ ¬ (C ′ |= Φ1 =⇒ C ′ |= Φ2)

A program constraint Φ is weaker than Φ′ if Φ 6= Φ′ and

• ∀`i, `j. (Φ =⇒ [`i; `j]) =⇒ (Φ′ =⇒ [`i; `j]) or

• (@`i, `j. Φ′ =⇒ [`i; `j] ∧ Φ /=⇒ [`i; `j]) ∧ (∀`i, `j. (Φ =⇒ `i v `j) =⇒ (Φ′ /=⇒

`i v `j)).

Intuitively, this means Φ is weaker than Φ′ if Φ has fewer atomic sections or if the number of

atomic sections are the same than Φ is weaker if it enforces fewer ordering constraints.

As our reorderings need to preserve the sequential semantics of the thread, we can compute

some reordering constraints even before considering concurrent executions. The procedure

SemPreservingOrders computes a program constraint Φ as follows. For each thread M it

picks `, `′ ∈ locs(M) such that ` precedes `′ in the original program, and checks if stmt(`) and

stmt(`′) commute, i.e., we test using a theorem prover two conditions: (a) stmt(`′); stmt(`) can

execute to completion from each state stmt(`); stmt(`′) can; and (b) they have the same effect.

If they do not commute, then Φ← Φ ∧ ` v `′.

If SemPreservingOrders returns Φ on input M , then every M ′ satisfying Φ (and obtained

by reordering) is sequentially equivalent to M , and no weaker Φ′ has the same property.

Example 3.2.1. Running SemPreservingOrders on the code fragment from Figure 3.1b gives

us a single constraint S v T as all other pairs of statements are independent of each other. In

Figure 3.1a, we get A v B v C ∧ 1 v 2 v 3 v 4.

Other transformations. We motivate another sequential-semantics preserving transformation

with an example. Some further transformations are in Section 3.5.1.

Example 3.2.2. In Figure 3.2, the timer thread is invoked when timer_enabled = 1

to handle requests. The device shutdown thread, shutdown, handles the remaining requests
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Figure 3.2 Example for copying idempotent statements.
init : timer_enabled := 1; halted := 0
timer shutdown
atomic_start 1 : work_queue() work_queue() {

A : assume(timer_enabled) 2 : timer_enabled := 0 P : unsafe()
B : timer_enabled := 0 3 : assert(¬timer_enabled) Q : timer_enabled := 1
C : work_queue() }

atomic_end

and disables the timer. There are two correctness conditions: (1) the timer is disabled after

device shutdown; and (2) the unsafe() function can be accessed only by one thread at a time.

Condition (2) is violated as statements 1 and C can cause unsafe to be executed simultaneously.

This happens if statement C calls unsafe through work_queue, and after executing a few

statements of unsafe, thread timer executes and, in the atomic section, calls unsafe. One

fix is to move 2 before 1. This introduces a trace where the assertion fails as the timer gets

re-enabled by 1 (switching 1 and 2 is not semantics preserving). A possible fix is to execute

statement 2 twice, before and after statement 1.

The above example illustrates another useful semantics-preserving transformation, namely,

replication of idempotent statements. A statement ` occurring after `′ can be replicated before `′

if stmt(`); stmt(`′); stmt(`) has the same effect as stmt(`′); stmt(`).

3.3 Generalising Counterexamples to Partial-order Neighbour-

hoods

In this chapter we consider bad partial-order neighbourhoods represented by a partial-order

HB-formula. We consider an execution bad if its last state is 〈failed〉. A bad partial-order

neighbourhood contains only bad traces, i.e., for every trace there exists at least one bad execution.

We do not guarantee that the bad partial-order neighbourhood of trace π contains all bad traces

in Nπ

Error invariants. Error invariants were introduced in [Ermis et al., 2012] in a sequential

setting. Here we use them to generalise counterexamples to partial-order HB-formulæ. Let π be

a trace S0`1S1 . . . `kSk. An error invariant ErrInv is a function from ` to state assertions, such

that :
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(a) ErrInv(`1) represents exactly state S0

(b) ∀i. ErrInv(`i) over-approximates the set of states reachable at `i along π. That is, ErrInv(`i)

holds for Si.

(c) ∀i. ErrInv(`i) under-approximates the set of states from which we can reach the failed state

along π starting from `i. That is, if ErrInv(`i) holds for Si, then Sn = 〈failed〉.

We generalise the notion of error invariant to neighbourhoods. An error invariant for Nπ
is a function ErrInv from location identifier ` to state assertions such that ErrInv is an error

invariant for every trace π′ in Nπ.

3.3.1 Generalising Counterexample Traces

Given an erroneous trace π, we now present techniques for generalising it into a bad partial-order

neighbourhood N. We assume we have discovered for each location `i in the original trace an

error invariant ErrInv(`i) = J`i .

The trace generalisation technique proceeds iteratively. Given a partial-order neighbourhood

N represented by a partial-order HB-formula, in each step, we attempt to relax N by removing

the conjunct hb(`a, `b) for two location identifiers `a, `b where tid(`a) 6= tid(`b). Further, we

require that ¬∃` : `a �N ` �N `b. However, we need to ensure that the resultant neighbourhood

remains bad after the relaxation, i.e., that every trace contained in it is an erroneous trace. We

formalise this condition below.

Let `c, `d ∈ locs(π) be such that `c �N `a �N `b �N `d and ∀` ∈ locs(π). ` �N `c ∨ `c �N
` �N `d ∨ `d �N `. Further, let κ ⊆ locs(π) be the set {`|`c �N ` �N `d} \ {`c, `d}, i.e., κ

represents the set of statements occur between `c and `d. We call the triple (`c, `d, κ) a border set

of `a, `b and Nπ.

Let J`c and J`d be the error invariants at `c and `d. Intuitively, we check that we can get

from J`c to J`d for every ordering of statements in κ allowed by N \ hb(`a, `b). Formally, let

`1, `2, . . . `n be such that each `i ∈ κ and ∀` ∈ κ. ∃i. `i = `, and ∀i. `i �N `i+1 ∨ `i =

`b ∧ `i+1 = `a. We allow relaxing the condition hb(`a, `b) in a step if and only if the following

holds: for every sequence `1; `2; . . . ; `n satisfying the above conditions, the Hoare-triple

{J`c}stmt(`1); stmt(`2); . . . ; stmt(`n){J`d} is valid.

Therefore, the full technique for generalising a trace is as follows: We start with the neigh-

bourhood that contains only the original trace N ≡
∧
{hb(`i, `j)|`i <π `j}. Then, in each step,
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we pick `a and `b, and then check the above conditions. If they hold, we relax by removing the

constraint hb(`a, `b) from N. Although this technique is sound and complete for generalising

traces, it can be inefficient due to the large number of complex checks needed in each iteration.

Instead, we present an alternative algorithm (Algorithm 3.1) that is sound, but incomplete. The

outline of the algorithm is the same as the complete technique presented above, i.e., in each

iteration, the algorithm attempts to relax hb(`a, `b). However, we use two alternative checks.

Algorithm 3.1 Generalising linear counterexamples
Require: counterexample trace π, error invariant ErrInv
Ensure: bad partial-order neighbourhood N represented by an HB-formula

1: N ←
∧
{hb(`i, `j)|`i <π `j}

2: for all hb(`a, `b) in N do
3: N ← N \ hb(`a, `b)
4: `c, `d, κ← borderSet(`a, `b,N)
5: res← true

6: for all U, V ∈ κ do
7: if U /� V ∧ V /� U then
8: res← res ∧ (check1(`u, `v, `c, `d,N,ErrInv ) ∨
9: check2(`u, `v, `c, `d,N,ErrInv ))

10: end if
11: end for
12: if ¬ res then N ← N ∧ hb(`a, `b)
13: end for
14: return N

Rule 1, implemented in procedure check1, allows relaxing the order between statements

that commute under certain conditions. To relax the edge from `u to `v, we check if there

exists K1 such that {J`c}stmt(`c){K1} is a valid Hoare-triple and K1∧ stmt(`v); stmt(`u) =⇒

K1 ∧ stmt(`u); stmt(`v). Intuitively, we are checking if the statements at `u and `v commute

given the pre-condition K1. Further, we require that other statements do not interfere with K1,

i.e., for all ` ∈ κ, K1 is preserved under `, i.e., {K1}stmt(`){K1} is a valid Hoare-triple.

Rule 2, implemented in procedure check2, allows relaxing the order between statements

which do not commute, but ensure the similar post-conditions in both orders. The procedure

check2(`u, `v, `c, `d,N) works as follows. Let J`c be the error invariant at `c, and let J`d be the

error invariant at `d. The procedure returns true if and only if there exists two state assertions

K1 and K2 such that for all nodes the following conditions hold: (a) {J`c}stmt(`c){K1},

{K1}stmt(`u); stmt(`v){K2}, and {K1}stmt(`v); stmt(`u){K2} are valid Hoare-triples; and

(b) K2 =⇒ J`d . These conditions state that the error invariants are sufficient to prove that `u

and `v commute. Furthermore, let ` be any other node in κ. We require that ` preserves K1 and
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K2, i.e., the following two Hoare-triples are valid: (c) {K1}stmt(`){K1} (d) {K2}stmt(`){K2}.

Intuitively, instead of checking all allowed paths from `c to `d, we find state assertions K1 and

K2 that are strong enough to prove commutativity, but are preserved by other statements in κ.

Example 3.3.1.

• Consider threads (1 : x := 0; 2 : x := x+1) and (A : x := x+1; B : assert(x ≤ 1)). Here,

1→ A→ 2→ B is an erroneous trace. However, the ordering of A and 2 is irrelevant to

the bug. This order can be eliminated by applying Rule 1 with precondition K1 ≡ true,

as we have A; 2 =⇒ 2; A.

• Using Rule 1 in the illustrative example (Figure 3.1a) taking K1 to be l1 = 1 ∧ l2 = 1

lets us commute the statements x := l1 and x := l2.

• Consider two threads each with the code (1 : x := 3) and (A : x := 2; B : assert(x = 0)).

The erroneous trace here is 1→ A→ B. Here, it is clear that 1 and A cannot be relaxed by

check1, because scheduling them in reverse order results in a different state. However, in

the context of this trace, interchanging A and 1 still preserves the error. Therefore, using

Rule 2 with K1 ≡ true and K2 ≡ x > 0 relax the ordering between A and 1.

We note that Rule 1 and Rule 2 provide only a sound, not a complete proof system for trace

generalisation. Application of both these rules involve finding suitable K1 and K2. The set of

conditions imposed on K1 and K2 can be expressed as Horn clauses. Solving Horn clauses

(in logics useful for program analysis) is a focus of recent research. Non-recursive version

was solved by [Gupta et al., 2011a], and recursive Horn clauses are solved successfully using

heuristics, for example, in [Gupta et al., 2011b]. These techniques can be used to implement

check1 and check2.

Theorem 3.3.2. Let π be a counterexample trace corresponding to an erroneous trace, and

ErrInv an error invariant for π. If Algorithm 3.1 returns neighbourhood N on π and ErrInv ,

then N is a bad neighbourhood of π.

Now at step i, we pick a constraint in N, and try to remove it. We remove a constraint

hb(`u, `v) if in all traces of N where `u is immediately followed by `v, we can swap the two and

still hit the bug. That the border nodes lb and ub exist is easy to see (X is finite).
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3.4 Synthesis by Elimination of Bad Neighbourhoods

We now present Algorithm 3.2 to solve the synthesis problem stated in Section 2.3.4 for programs

with an explicit specification using atomic sections and reorderings. It works by finding a buggy

trace, generalising it, and then eliminating it using either an atomic section, or a code reordering.

The algorithm maintains a program constraint Φ. In each iteration, program C ′ which satisfies

Φ is picked and verified. If correct, it is returned. Otherwise, Φ is strengthened using the

generalised counterexample. Note that as Verify is solving an undecidable problem, it may

not terminate. This results in our algorithm not terminating as well. However, as the constraint is

strengthened at each step and only a finite number exist, if all calls to Verify terminate, then

the algorithm terminates and always returns a correct program. The verification question may be

undecidable because our language is Turing-complete. This correct program, in the worst case,

will have every thread enclosed in an atomic section.

Algorithm 3.2 Synthesis algorithm
Require: Library C
Ensure: Error-free program C ′ sequentially equivalent to C

1: Φ← SemPreservingOrders(C)
2: while true do
3: C ′ ← Choose(Φ)
4: if Verify(C ′) return C ′
5: N ← Generalise(cex(C ′),Φ)
6: Φ← Φ ∧ Eliminate(N,Φ)
7: end while

Algorithm SemPreservingOrders was defined in Section 3.2. Generalise is the Al-

gorithm 3.1. Algorithm Choose picks a program satisfying a given constraint. Eliminate (see

below) finds constraints to eliminate a generalised po-trace.

The basic idea behind generalised trace elimination is that N encodes the happens-before

relation among statements and hence cannot contain loops. Hence, we aim to enforce minimal

constraints to introduce a cycle in the HB-formula representing N. We extend the HB-formula

representingN by introducing constraints corresponding to possible atomic sections and reorder-

ings. We then find the smallest cycles, which correspond to the required minimal constraints.

Fix a program C and a partial-order neighbourhood N for the remainder of this section.

We represent N with an elimination graph G(N,Φ) = (S,E), that is a weighted graph with

vertices S = locs(π). Here Φ refers to the constraints from SemPreservingOrders and previous
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iterations. The edges E ⊆ S × N × S are described below. Let `, `′ ∈ S. The function cons

assigns a constraint to each edge of the elimination graph. We have (`, w, `′) ∈ E if:

• tid(`) 6= tid(`′) ∧ ` � `′ ∧ w = 1 ∧ ¬∃`′′. ` � `′′ � `′. In this case, we define

cons((`, w, `′)) = >.

• tid(`) = tid(`′), where ` � `′ and either ` and `′ belong to different blocks or Φ =⇒

` v `′. We have w = |{`′′ | ` � `′′ � `′}|. Here, we let cons((`, w, `′)) = >. These edges

correspond to happens-before relations that hold due to Φ.

• tid(`) = tid(`′) ∧ Φ =⇒ `′ v ` and w = A · |{`′′ | `′ � `′′ � `}| for some constant

A ∈ N. Here, we define cons((`, w, `′)) = ({`, `′}, ∅). Such edges correspond to adding

an atomic section around ` and `′. We give the atomic section a cost proportional to the

minimum number of control locations it contains.

• tid(`) = tid(`′) ∧ Φ /=⇒ ` v `′ ∧ Φ /=⇒ `′ v ` and w = R · |{(`′′, `′′′) | Φ /

=⇒ `′′ v `′′′ ∧ Φ =⇒ `′′ v ` ∧ `′ v `′′′} for some R ∈ N. Here, we define

cons((`, w, `′)) = (∅, {(`, `′)}). This edge corresponds to forcing the order ` before `′ and

has a cost proportional to the number of additional statement orders the constraint implies.

Intuitively, an edge (`, w, `′) with cons((`, w, `′)) = > represents a happens-before relation true

in any C ′ satisfying Φ. Every remaining edge (`, w, `′) is a happens-before relation true in any

program satisfying cons((`, w, `′)). We pick A much larger than R to prefer solutions having

only reorderings rather than atomic sections (picking A and R such that A > R · |locs(π)|2 is

sufficient).

Let `0 . . . `n−1`0 be a cycle in the elimination graph for the partial-order neighbourhood N

and Φ such that `0 = ` ∧ `n−1 = `′ and tid(`) 6= tid(`′). We call such a cycle an elimination

cycle. We show that any elimination cycle gives us a constraint that eliminates all traces in N.

From the elimination cycle, we obtain the following constraint
∧n−2
i=0 cons((xi, xi+1)). This is

the constraint returned by Eliminate (called from Algorithm 3.2). A constraint Φ′ eliminates a

neighbourhood N iff all libraries satisfying Φ ∧ Φ′ and sequentially equivalent to C do not share

a trace with N.

Theorem 3.4.1. LetG(N,Φ) contain an elimination cycle `0`1 . . . `n−1`0. Then,
∧n−2
i=0 cons((`i, `i+1))

eliminates the partial-order neighbourhood N.

Proof. Assume π = S0`1S1 . . . `kSk to be an execution. Any execution π in C ′ satisfying Φ and

cons(`i, `i+1) has `i < `i+1. Hence, any trace π satisfying
∧n−2
i=0 cons((`i, `i+1)) and Φ satisfies
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`0 < `n−1. However, as (`n−1, `0) is an edge in the elimination graph where `0 and `n−1 come

from different threads, we have that `n−1 �N `0 and hence, `n−1 < `0. This is not possible as

`0 and `n−1 correspond to different threads. Hence, every execution π ∈ N is eliminated by∧n−2
i=0 cons((`i, `i+1)).

Further, the minimal elimination cycle corresponds to a minimal constraint. As A >

R|locs(π)|2, atomic sections are used iff N cannot be eliminated by reordering.

Theorem 3.4.2. If Φ is the constraint corresponding to the minimal cycle in the elimination

graph, no strictly weaker constraint is sufficient to eliminate N.

Finding minimal cycles can be done by running an all-pairs shortest path algorithm, and

finding nodes u, v from different threads such that sum of distances u to v and v to u is minimal.

Hence, the theorem follows.

Theorem 3.4.3. Finding minimal elimination cycles in the elimination graph G(N,Φ) can be

done in time polynomial in the size of N and Φ.

3.5 Implementation and Experiments

3.5.1 A study of concurrency bugs in Linux drivers

Our work is motivated by a study of concurrency defects in Linux device drivers. Drivers are

required to perform well under concurrent workloads, which calls for sparing and fine-grained

use of locks. This, in turn, provokes many concurrency-related bugs, making concurrency

a major source of errors in drivers [Chou et al., 2001; Ryzhyk et al., 2009]. Additionally,

the kernel imposes a number of constraints on the use of locks. For example, a driver may

not perform blocking operations, such as acquiring a mutex, in its interrupt handler routine.

Driver threads interact with other kernel threads; however, since the developer can not modify

kernel code outside the driver, synchronisation with external threads must be achieved without

placing additional locks in the kernel. Our study considered 100 most recent (as of Dec. 2012)

concurrency-related defects fixed in Linux device drivers (we used the Linux kernel development

archive obtained from www.kernel.org). These defects occurred in 68 different drivers,

all maintained by different developers. For each bug, we rely on manual code inspection to

understand the exact nature of the bug and the fix.

www.kernel.org
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Table 3.1 Synchronisation patterns in Linux device drivers.
pattern description #
REORDER Reorder program statements to eliminate a race 28
LOCK Protect racing code sections with a lock 17
OPTIMISTIC Check if another thread has modified the value of a shared variable 10
BARRIER Use a system-provided function to wait for a racing thread to terminate or complete

a critical section
7

ATOMIC Replace a statement-sequence with an equivalent atomic primitive 6
UPGRADE Replace a synchronisation primitive with a stronger one 5
UNSHARE Avoid sharing by creating a private copy of a shared variable 3
CLONE Replicate an idempotent statement 1
ADHOC Transformations that do not fall into one of the previous categories 23
Total 100

Figure 3.3 Examples of REORDER subpatterns and corresponding elimination graphs.

(a) REORDER.RELEASE

init : x := 0, run := 0
thread1 thread2
B : x := 1 1 : wait(run)
A : signal(run) 2 : assert(x)

(((((B : x := 1

(b) REORDER.LOCK

init : x := 1
thread1 thread2
B : x := 0 1 : lock(l)
D : x := 1 2 : assert(x)
C : unlock(l) 3 : unlock(l)

(((((D : x := 1

(c) REORDER.DELAY

init : x := 1
thread1 thread2
(((((A : x := 0 1 : assert(x)
B : wait(exit) 2 : signal(exit)
A : x := 0

We observed that many bug fixes involve subtle and seemingly ad hoc code transformations.

In-depth analysis reveals several common patterns, shown in Table 3.1. In particular, 28 of 100

fixes were semantic-preserving statement reorderings (the REORDER pattern). These further fall

into several subpatterns (see Table 3.2 and Figure 3.3). Reordering statements often involves

additional side effects. For example, moving a statement across function boundaries may require

adding arguments or return values to functions. Our implementation currently does not perform

these, but can be extended to do so.

Interestingly, the LOCK pattern (17%) is rarer than expected. Performance and kernel-

imposed constraints often prevent lock usage. This observation confirms that locks are not

a universal band-aid for concurrency defects in OS code. We do not discuss remaining bug

categories, but note that we encountered 23 bug fixes that did not fit into any pattern (AD HOC in

Table 3.1). We expect to discover new patterns among these as we include more defects in our

study.



46

Table 3.2 Subpatterns of the REORDER pattern.
pattern description example #
REORDER.RELEASE Move a variable assignment to a location before another

thread accessing this variable is released
Figure 3.3a 11

REORDER.LOCK Move statements to existing lock-protected section Figure 3.3b 10
REORDER.DELAY Delay assignment to a shared variable until a racing thread

accessing this variable has terminated
Figure 3.3c 6

REORDER.RW Reorder accesses to a pair of shared variables Figure 3.1b 1
REORDER.ADHOC Application-specific reordering – 1

3.5.2 Synthesis case study

We implemented our synthesis algorithm in a tool called CONCURRENCYSWAPPER1. It handles

a restricted subset of C, avoiding complex parts including pointer arithmetic, aliasing, bit-wise

arithmetic, etc. It uses CPAChecker [Beyer and Keremoglu, 2011] to convert C statements into

formulæ representing statements, as in Section 2.3.4. We use the bounded model checking tool

Q [Q] to detect three kinds of bugs: (a) assertion failures; (b) generic correctness conditions

(e.g., initialisation-before-use for pointers); and (c) deadlocks (as Q does not detect deadlocks,

we manually encoded these as suitable assertions for our examples). We generalise buggy traces,

using the Z3 theorem prover [de Moura and Bjørner, 2008] to perform the required checks for

Rules 1 and 2. The current implementation does not compute invariants during generalisation;

but even without invariant computation, our tool came up with the right program transformations

quickly. To evaluate the effectiveness of trace generalisation, we ran the experiments with and

without it.

Reporting. Although each iteration of the algorithm eliminates a buggy po-trace, additional

traces may exhibit the same bug. We report the iterations needed to completely fix a bug, i.e.,

until no more traces exhibit a similar bug. Also, we report separately, the time taken to: (a) find

bugs; (b) generalise the trace and find a fix; and (c) verify the correct program. We report the

verification time separately as it is usually the largest fraction of execution time.

Benchmarks. Our initial evaluation consisted of 5 microbenchmarks each of 15–30 lines of

code without comments, and modelling a single concurrency defect found in a real Linux driver.

The iterations required and fix patterns are summarised in Table 3.3. All measurements were

1available as open-source software along with benchmarks: https://github.com/thorstent/
ConcurrencySwapper

https://github.com/thorstent/ConcurrencySwapper
https://github.com/thorstent/ConcurrencySwapper
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Table 3.3 Micro-benchmarks
Benchmark Fix pattern Iters. Iters (w/o trace gen.)

ex1 REORDER.RW 1 1
ex2 REORDER.RELEASE 1 1
ex3 REORDER.LOCK 1 1
ex4 REORDER.ADHOC 3 3
ex5 LOCK 2 3

Table 3.4 Results for Linux Realtek 8169 driver benchmark
Bug Fix pattern With trace generalisation Without trace generalisation

Iters. Bug-finding Iters. Additional bug-finding
bug1 REORDER.RELEASE 1 8 sec 1 same
bug2 REORDER.DELAY 1 23 sec 4 same + 80 sec
bug3 REORDER.RW 1 93 sec 1 same
bug4 REORDER.RW 1 94 sec 1 same
bug5 REORDER.ADHOC 2 47 sec 2 same

done on an Intel core i5-3320M laptop with 8GB of RAM. The synthesis took less than 15

seconds for each case, with trace analysis taking less than 0.5 seconds. Also, in 1 case, not using

trace generalisation leads to an additional iteration, leading to a larger execution time.

We evaluate the scalability of CONCURRENCYSWAPPER using a simplified version of the

Linux Realtek 8169 driver. This driver is representative of medium to high-end drivers both in

terms of overall complexity and the complexity of synchronisation logic. We extracted the driver’s

complete synchronisation skeleton, including code and variables related to thread synchronisation

and communication. The skeleton does not include the actual device management code, which

is irrelevant to concurrency, and was additionally simplified to avoid currently unsupported C

constructs. We provide an environment model to simulate all (7) OS threads that interact with

the driver. The resulting skeleton had 364 LOC, while the original driver had around 7,000 LOC.

The skeleton had 5 concurrency defects.

Q was able to find all the defects, and CONCURRENCYSWAPPER was able to find fixes for

each defect through statement reordering. The results are summarised in Table 3.4. In each

iteration, the trace analysis phase took less than 2 seconds. The extra bug finding times due

to additional iterations is reported for the runs without trace generalisation. In one case, the 3

additional iterations were required without trace generalisation. The bug finding times dominate

the trace analysis times, justifying the use of complex trace generalisation procedure to avoid

additional iterations. The verification phase took around 30 minutes.
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Chapter 4

Regression-free Synthesis

4.1 Problem Statement and Illustrative Example

In Chapter 3 we introduced a trace-based algorithm for program repair of programs with explicit

specification. We applied two types of program transformations: (1) reordering of adjacent

statements stmt(`a); stmt(`b) within a thread if the statements are sequentially independent (i.e.,

if stmt(`a); stmt(`b) is sequentially equivalent to stmt(`b); stmt(`a)), and (2) inserting atomic

sections. Reordering of statements is given priority as it may result in a better performance than

the insertion of atomic sections.

While placing atomic sections is safe, reordering statements can result in assertion violations

becoming reachable that were not reachable in the original program. This is called a regression.

In this chapter we demonstrate the use of good traces to prevent regressions.

We say that such an algorithm is regression-free if after every iteration, we have that: first,

all bad traces examined so far are removed, and second, no good trace examined so far is turned

into a bad trace of the new program. (Of course, to make this definition precise, we will need to

define a correspondence between traces of the original program and the new program.)

In related work by [von Essen and Jobstmann, 2013], the goal is to repair reactive systems

(given as automata) according to an LTL specification, with a guarantee that good traces do not

disappear as a result of the repair. They do not deal with concurrency bugs or synchronisation.

Our algorithm. Our algorithm learns constraints on the space of candidate solutions from

both good traces and bad traces. We explain constraint learning using as an example the program



50

transformation `1 ! `2 (Section 3.2), which reorders statements within threads. From a bad

trace, we learn reordering constraints that eliminate the counterexample using Algorithm 3.2.

While eliminating the counterexample, such reorderings may transform a (not necessarily

preemption-free) good trace into a bad trace — this would constitute a regression. In order to

avoid regressions, our algorithm learns also from good traces. Intuitively, from a good trace π,

we want to learn all the ways in which π can be transformed by reordering without turning it into

an error trace— this is expressed as a program constraint. The program constraint is (a) sound,

if all programs satisfying the constraint are regression-free; and (b) complete, if all programs

violating the constraint have regressions. However, as learning a sound and complete constraint

is not possible from a single trace, given a good trace π we learn a sound constraint that only

guarantees that π is not transformed into a bad trace. We generate the constraint using data-flow

analysis on the statements in π. The main idea of the analysis is that in good traces, the data-flow

into passing assertions is protected by synchronisation mechanisms (such as locks) and data-flow

into conditionals along the trace. This protection may fail if we reorder statements. We thus find

a constraint that prevents such bad reorderings.

Summarising, as the algorithm progresses and sees a set of bad traces and a set of good traces,

it learns constraints that encode the ways in which the program can be transformed in order to

eliminate the bad traces without turning the good traces into bad traces of the resulting program.

CEGIS vs PACES. A popular recent approach to synthesis is counterexample-guided inductive

synthesis (CEGIS) [Solar-Lezama et al., 2006]. Our algorithm can be viewed as an instance of

CEGIS with the important feature that we learn from positive examples. We dub this approach

PACES, for Positive- and Counter-Examples in Synthesis. The input to the CEGIS algorithm

is a specification ϕ (possibly in multiple pieces – say, as a temporal formula and a language

of possible solutions [Alur et al., 2013]). In the basic CEGIS loop, the synthesiser proposes

a candidate solution S, which is then checked against ϕ. If it is correct, the CEGIS loop

terminates; if not, a counterexample is provided and the synthesiser uses it to improve S.

In practice, the CEGIS loop often faces performance issues, in particular, it can suffer from

regressions: new candidate solutions may introduce errors that were not present in previous

candidate solutions. We address this issue by making use of positive examples (good traces)

in addition to counterexamples (bad traces). The good traces are used to learn constraints that

ensure that these good traces are preserved in the candidate solution programs proposed by the
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CEGIS loop. The PACES approach applies in many program synthesis contexts, but in this

chapter, we focus on program repair for concurrency.

Experimental evaluation. To evaluate our approach, we implemented a program repair tool,

named CONREPAIR, and applied it to a collection of (simplified) open-source Linux device

drivers. We looked at concurrency bugs that were reported and fixed in the Linux kernel

repository. We used five examples, where we modelled the concurrency skeleton in sufficient

detail to reproduce the bug (between 35 and 80 lines of code per example). In addition, we did

two larger case studies, of the rtl8169 and usb-serial drivers, modelled in more detail,

with about 400 lines of code each. As explained above, our tool tries to fix a bug by reordering

statements within threads, which is the preferred solution and/or by inserting atomic sections. In

each case, our tool found a solution that fixed the problem (or, in the case of rtl8169, multiple

problems). To evaluate the impact of using positive examples, we compared CONREPAIR with

two versions of CONCURRENCYSWAPPER (Chapter 3), which do not use positive examples.

The first version of CONCURRENCYSWAPPER (ce1) prefers to exhaust all possible statement

reorderings before using atomic sections; the second version (ce2) heuristically decides to insert

atomic sections earlier. We found that (a) the new tool converges to a solution in a significantly

smaller number of iterations than (ce1), and (b) the new tool finds solutions with fewer atomic

sections than (ce2) in a comparable number of iterations. We thus conclude that the use of

positive examples can substantially improve the performance and quality of counterexample-

guided inductive synthesis algorithms. In theory it is possible that ce2 inserts an atomic section

earlier that is not needed.

4.1.1 Illustrative Example

We motivate our approach on the program C in Figure 4.1a. There is a bug witnessed by the

following trace: π1 = A → B → 1 → 2 → 3 (the assertion at line 3 fails). Let us attempt to

fix the bug using the algorithm from Chapter 3. The algorithm discovers possible fixes by first

generalising the trace into a partial order (Figure 4.1b, without the dotted edges) representing the

happens-before relations necessary for the bug to occur, and second, trying to create a cycle in

the partial order to eliminate the generalised counterexample. It finds three possible ways to do

this: swapping B and C, or moving C before A, or moving A after C, indicated by the dotted edges

in Figure 4.1b. Assume that we continue with swapping B and C to obtain program C1 where the
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Figure 4.1 Program analysis with good and bad traces

init : x := 0; y := 0; z := 0
thread1 thread2 thread3
1 : await(x = 1) A : x := 1 n : await(z = 1)
2 : await(y = 1) B : y := 1 p : assert(y = 1)
3 : assert(z = 1) C : z := 1

(a) Program C

1

2

3

A

B

C

(b) Reorderings from bad traces

1

2

3

A

B

C

n

p

(c) Learning from a good trace

first thread is A; C; B. Program C1 contains an error trace π2 = A→ C→ n→ p (the assertion

at line p fails). This bug was not in the original program, but was introduced by our fix. We refer

to this type of bug as a regression.

In order to prevent regressions, the algorithm learns from good traces. Consider the following

good trace π3 = A→ B→ C→ 1→ 2→ n→ 3→ p. The algorithm analyses the trace, and

produces the graph in Figure 4.1c. Here, the thick red edges indicate the reads-from relation for

assert commands, and the dashed blue edges indicate the reads-from relation for await commands.

Intuitively, the algorithm now analyses why the assertion at line p holds in the given trace. This

assertion reads the value written in line B (indicated by the thick red edge). The algorithm finds a

path from B to p composed entirely from intra-thread sequential edges (B→ C and n→ p) and

dashed blue edges (C→ n). This path guarantees that this trace cannot be changed by different

scheduler choices into a path where p reads from elsewhere and fails. From the good trace π2 we

thus find that there could be a regression unless B precedes C and n precedes p. Having learned

this constraint, the synthesiser can find a better way to fix π1. Of the three options described

above, it chooses the only way which does not reorder B and C, i.e., it moves A after C. This fixes

the program without regressions.

4.1.2 Problem Statement

We use the definition of program constraints Φ introduced in Section 3.2.
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Trace Transformations and Regressions. A trace π = `0 . . . `m transforms into a trace π′ =

`′0 . . . `
′
m by switching if: (a) `0 . . . `n = `′0 . . . `

′
n and the suffixes `n+2 . . . `m and `′n+2 . . . `

′
m are

equal; and (b) ln = `′n+1 ∧ `n+1 = `′n. We label switching transformations as a:

• Free transformation if `n and `n+1 are from different threads. We write π′ ∈ f(π) if a

sequence of free transformations takes π to π′.

• Reordering transformation θ = `] ! `[ acting on π if `n = `] and `n+1 = `[ and `], `[

from the same thread.

We have π′ ∈ θ(π) if repeated applications of reordering transformations acting on π give

π′. Similarly, π′ ∈ θf (π) if repeated applications of θ and free transformations acting on π

give π′.

Reordering is a special form a switching because it requires changes to the order of statements

in the actual program. Similarly, π′ is obtained by atomic section transformation θ = [`1; `2]

acting on a trace π if π′ ∈ f(π), and there are no context-switches between `1 and `2 in π′

(Section 3.2).

Trace analysis graphs. We use trace analysis graphs to characterise data-flow and scheduling

in a trace. First, given a trace π = `0 . . . `n, we define the function depends to recursively

find the data-flow edges into the location `i. Formally, dependsπ(i) =
⋃
v

(
{(last(i, v), i)} ∪

dependsπ(last(i, v))
)

where v ranges over variables read by `i, and last(i, v) returns j if `i reads

the value of v written by `j and last(i, v) = ⊥ if no such j exists. As the base case, we define

dependsπ(⊥) = ∅.

Now, a trace analysis graph for trace π = `0 . . . `n is a multi-graph G(π) = 〈V,→〉, where

V = {⊥} ∪ {i|0 ≤ i ≤ n} are the positions in the trace along with ⊥ (representing the initial

state) and→ contains the following types of edges.

1. Intra-thread order (IntraThreadOrder ): We have x → y if either x < y, and `x and `y

are from the same thread, or if x = ⊥.

2. Data-flow into conditionals (DFConds): We have
⋃
a∈conds dependsπ(a) ⊆→ where

x ∈ conds iff stmt(`x) is an assume or an await statement.

3. Data-flow into assertions (DFAsserts): We have
⋃
a∈asserts dependsπ(a) ⊆→ where x ∈

asserts iff stmt(`x) is an assert statement.

4. Non-free order (NonFreeOrder ): We have x → y if stmt(`x) and stmt(`y) write two

different values to the same variable. Intuitively, the non-free orders prevent switching
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transformations that switch `x and `y.

Regressions. Suppose C θ1,...,θk−−−−→ C ′. We say θ1, . . . , θk introduces a regression with respect to

a good trace π = `0 . . . `m of C if there exists a trace π′ = `′0 . . . `
′
m ∈ θ

f
k ◦ . . . ◦ θ

f
1 (π) such that:

(a) π′ is a bad trace of C ′; (b) π does not freely transform into any bad trace of C; and (c) for

every data-flow into conditionals edge x → y (say ly reads the variables V from lx) in G(π),

the edge p(x)→ p(y) is a data-flow into conditionals edge in G(π′) (where `′p(y) reads the same

variables V from `′p(x)). Here, p(i) is the position in π′ of the statement at position i in π after the

sequence of switching transformations that take π to π′. We say θ1 . . . θk introduces a regression

with respect to a set TG of good traces if it introduces a regression with respect to at least one

trace π ∈ TG.

Intuitively, a program-transformation induces a regression if it allows a good trace π to

become a bad trace π′ due to the program transformations. Further, we require that π and π′ have

the conditionals enabled in the same way, i.e., the assume and await statements read from the

same locations.

Remark 4.1.1. The above definition of regression attempts to capture the intuition that a good

trace transforms into a “similar” bad trace. The notion of similar asks that the traces have the

same data-flow into conditionals – this condition can be relaxed to obtain more general notions

of regression. However, this makes trace analysis and finding regression-free fixes much harder

(See Example 4.2.4).

Example 4.1.2. In Figure 4.1, the trace π = A; B; C; n; p transforms under B ! C to

π′ = A; C; B; n; p, which freely transforms to π′′ = A; C; n; p; B. Hence, B ! C introduces a

regression with respect to π as π does not freely transform into a bad trace, and π′ is bad while

the await in n still reads from C.

The Regression-free Program-Repair Problem. Intuitively, the program-repair problem asks

for a correct program C ′ that is a transformation of C. Further, C ′ should preserve all sequential

behaviour of C; and if all preemption-free behaviour of C is good, we require that C ′ preserves it.

Program repair problem. The input is a program C where all complete sequential traces

are good. The result is a sequence of program transformations θ1 . . . θn and C ′, such that

(a) C θ1...θn−−−→ C ′; (b) C ′ has no bad traces; (c) for each complete sequential trace π of C, there
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exists a complete sequential trace π′ of C ′ such that π′ ∈ θ1 ◦ θ2 . . . ◦ θn(π); and (d) if all

complete preemption-free traces of C are good, then for each such trace π, there exists a complete

preemption-free trace π′ of C ′ such that π′ ∈ θ1 ◦ θ2 . . . ◦ θn(π). We call the conditions (c) and

(d) the preservation of sequential and correct preemption-free behaviour.

Regression-free error fix. Our approach to the above problem is through repeated regression-

free error fixing. Formally, the regression-free error fix problem takes a set of good traces TG, a

program C and a bad trace π as input, and produces transformations θ1, . . . , θk and C ′ such that

C θ1...θk−−−→ C ′, π′ ∈ θfk ◦ . . . ◦ θ
f
1 (π) is a trace in C ′, and θ1, . . . , θk does not introduce a regression

with respect to TG.

Our approach to program-repair is through learning regression preventing constraints from

good traces and error eliminating constraints from bad traces.

4.2 Good and Bad Traces

4.2.1 Learning from Good Traces

Given a trace π of C, a program constraint Φ is a sound regression preventing constraint for π if

no sequence of program transformations θ1, . . . , θk, such that C θ1...θk−−−→ C ′ and C ′ |= Φ, introduces

a regression with respect to π. Further, if every θ1 . . . θk, such that C θ1...θk−−−→ C ′ and C ′ 6|= Φ1,

introduces a regression with respect to π, then Φ is a complete regression preventing constraint.

Example 4.2.1. Let the program C be {1 : x := 1; 2 : y := 1}||{A : await(y); B : assert(x =

1)}. In Figure 4.2a, the constraint Φ∗ = (1 v 2 ∧ A v B) is a sound and complete regression-

preventing constraint for the trace 1→ 2→ A→ B.

Lemma 4.2.2. For a program C and a good trace π, the sound and complete regression-

preventing constraint Φ∗ is computable in exponential time in |π|.

Intuitively, the proof relies on an algorithm that iteratively applies all possible free and

program transformations in different combinations (there are a finite, though exponential, number

of these) to π. It then records the constraints satisfied by programs obtained by transformations

that do not introduce regressions.

1see Section 3.2 for definition
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Figure 4.2 Sample Good Traces for Regression-preventing constraints

1 : x := 1

2 : y := 1

A : await(y = 1)

B : assert(x = 1)

(a)

1 : x := 1

2 : y := 1

A : await(y = 1)

B : assert(x = 1)

C : a := 1

3 : assume(a = 1)

4 : x := 0

(b)

1 : x := 1

2′ : y := 2

2 : y := 1A : await(y >= 1)

B : assert(x = 1)

(c)

While the complexity is exponential, we can show that this cost is unavoidable. We do not

present the proof here, but only state that it is non-constructive and is based on Shannon’s lower

bounds on circuit complexity for boolean functions.

Lemma 4.2.3. There exist a class of programs Cn, and traces πn of length O(n) such that the

most-general regression-preventing constraint is of size Θ(2n

n
).

The sound and complete constraints are usually large and impractical to compute. Instead, we

present an algorithm to compute sound regression-preventing constraints. The main issue here

is non-locality, i.e., statements that are not close to the assertion may influence the regression-

preventing constraint.

Example 4.2.4. The trace in Figure 4.2b is a simple extension of Figure 4.2a. However, the

constraint (1 v 2 ∧ A v B) (from Example 4.2.1) does not prevent regressions for Figure 4.2b.

An additional constraint B v C ∧ 3 v 4 is needed as reordering these statements can lead

to the assertion failing by reading the value of x “too late”, i.e., from the statement 4 (trace:

1→ 2→ A→ C→ 3→ 4→ B).
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Figure 4.2c clarifies our definition of regression, which requires that the data-flow edges into

assumptions and awaits need to be preserved. The await can be activated by both 2 and 2′; in

the trace we analyse it is activated by 2. Moving 2′ before 1 could activate the await “too early”

and the assertion would fail (trace: 2′ → A→ B). However, it is not possible to learn this purely

with data-flow analysis – for example, if statement 2′ was y := −1, then this would not lead to a

bad trace. Hence, we exclude such cases from our definition of regressions by requiring that the

await reads A reads from the same location.

Learning Sound Regression-Preventing Constraints. The sound regression-preventing con-

straint learned by our algorithm for a trace ensures that the data-flow into an assertion is preserved.

This is achieved through two steps: suppose an assertion at location `a reads from a write at

location `w. First, the constraint ensures that `w always happens before `a. Second, the constraint

ensures that no other writes interfere with the above read-write relationship.

For ensuring happens-before relationships, we use the notion of a cover. Intuitively, given a

trace π of C where location `x happens before location `y, we learn a constraint Φ that ensures

that if C ′ |= Φ, then each trace π′ of C ′ obtained as free and program transformations acting on π

satisfies the happens-before relationship between `x and `y. Formally, given a trace π of program

C, we call a path x1 → x2 → . . . → xn in the trace analysis graph a cover of edge x → y if

x = x1 ∧ y = xn and each of xi → xi+1 is either a intra-thread order edge, or a data-flow into

conditionals edge, or a non-free order edge.

Given a trace π = `0; `1 . . . `n, where statement at position r (i.e., `r) reads a set of variables

(say V ) written by a statement at position w (i.e., `w), the non-interference edges define a

sufficient set of happens-before relations to ensure that no other statements can interfere with

the read-write pair, i.e., that every other write to V either happens before w or after r. Formally,

we have that interfere(w → r) = {r → w′ | w′ > r ∧ write(`w′) ∩ write(`w) ∩ read(`r) 6=

∅} ∪ {w′ → w | w′ < w ∧ write(`w′) ∩ write(`w) ∩ read(`r) 6= ∅} where read(`) and write(`)

are the variables read and written at location `. If w = ⊥, we have interfere(w → r) = {r →

w′ | w′ > r ∧ write(`w′) ∩ read(`r) 6= ∅}.

Algorithm 4.1 works by ensuring that for each data-flow into assertions edge e, the edge

itself is covered and that the interference edges are covered. For each such cover, the set of

intra-thread order edges needed for the covering are conjuncted to obtain a constraint. We take

the disjunction Φ′ of the constraints produced by all covers of one edge and add it to a constraint
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Algorithm 4.1 LearnGoodUnder

Require: A good trace π
Ensure: Regression-preventing constraint Φ

1: Φ← true;G← G(π)

2: for all e ∈
(

DFAsserts(G) ∪
⋃
f∈DFAsserts(G) interfere(f)

)
do

3: if e is not covered then return
∧
{`x ≤ `y | x→ y is a intra-thread order edge}

4: Φ′ ← false

5: for all x1 → x2 → . . .→ xn cover of e do
6: Φ′ ← Φ′ ∨

∧
{`xi ≤ `xi+1

| xi → xi+1 is a intra-thread order edge and xi 6= ⊥
`xi and `xi+1

are from the same execution of a basic block in π }
7: end for
8: Φ← Φ ∧ Φ′

9: end for
10: return Φ

Φ to be returned. If an edge cannot be covered, the algorithm falls back by returning a constraint

that fixes all current intra-thread orders. The algorithm can be made to run in polynomial time in

|π| using standard dynamic programming techniques.

Theorem 4.2.5. Given a trace π, Algorithm 4.1 returns a constraint Φ that is a sound regression-

preventing constraint for π and runs in polynomial time in |π|.

Proof. The fallback case (line 3) is trivially sound. Let us assume towards contradiction that there

is a bad trace π′ = `′0; `′1 . . . `
′
n of C ′ |= Φ, that is obtained by transformation of π = `0; `1 . . . `n.

For each 0 ≤ i < n, let p(i) be such that the statement at position i in π is at position p(i) in π′

after the sequence of switching transformations taking π to π′.

If for every data-flow into assertion edge in x→ y in G(π), we have that p(x)→ p(y) is a

corresponding data-flow into assertion edge in G(π′), then it can be easily shown that π′ is also

good (each corresponding edge in π′ reads the same values as in π). Now, suppose x→ y is the

first (with minimal x) such edge in π that does not hold in π′. We will show in two steps that

p(x) happens before p(y) in π′, and that p(y) reads from p(x) which will lead to a contradiction.

For the first step, we know that there exists a cover of x→ y in π. For now, assume there is

exactly one cover – the other case is similar. For each edge a → b in this cover, no switching

transformation can switch the order of `a and `b:

• If a→ b is a data-flow into conditionals edge, as π′ has to preserve all DFConds edges

(definition of regression), p(a) happens before p(b) in π′.

• If a→ b is a non-free order edge, no switching transformation can reorder a and b as that

would change variables values (by definition of non-free edges).
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• If a→ b is a intra-thread order edge, we have that C ′ |= Φ and Φ =⇒ a v b, and hence,

no switching transformation would change the order of a and b.

Hence, we have that all the happens before relations given by the cover are all preserved by π′

and hence, p(a) happens before p(a) in π′. The fact that p(y) reads from p(x) follows from a

similar argument with the interfere(x → y) edges showing that every interfering write either

happens before p(x) or after p(y).

4.2.2 Eliminating Bad Traces

Given a bad trace π of C, a program constraint Φ is a error eliminating constraint if for all

transformations θ1, . . . , θk and C ′ such that C θ1...θk−−−→ C ′ and C ′ |= Φ, each bad trace π′ in

θfk ◦ . . . ◦ θ
f
1 (π) is not a trace of C ′. In Chapter 3, we presented an algorithm to fix bad traces

using reordering and atomic sections. The main idea behind the algorithm is as follows. Given a

bad trace π, we (a) first, generalise the trace into a partial order neighbourhood; and (b) then,

compute a program constraint that violates some essential part of the ordering necessary for the

bug.

More precisely, the algorithm builds a trace elimination graph which contain edges corres-

ponding to the orderings necessary for the bug to occur, as well as the edges corresponding

program constraints. Fixes are found by finding cycles in this graph – the conjunction of the

program constraints in a cycle form an error elimination constraint. Intuitively, the program

constraints in the cycle will enforce a happens-before conflicting with the orderings necessary

for the bug.

Example 4.2.6. Consider the program in Figure 4.3a and the trace elimination graph for the

trace A; B; 1; 2; C. The orderings A happens-before 1 and 2 happens-before C are necessary for

the error to happen. The cycle C→ A→ 1→ 2→ C is the elimination cycle. The corresponding

error eliminating constraint is C v A ∧ 1 v 2, and one possible fix is to move C ahead of A.

For the bad trace A; 1; B in Figure 4.3b, the elimination cycle is A→ 1→ B→ A giving us the

constraint [A; B] and an atomic section around A; B as the fix.

The FixBad algorithm. The FixBad algorithm takes as input a program C, a constraint Φ

and a bad trace π. It outputs a program constraint Φ′, sequence of program transformations

θ1, . . . , θk, and a new program C ′, such that C θ1...θk−−−→ C ′. The algorithm guarantees that (a) Φ′ is
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Figure 4.3 Eliminating bad traces

A : x := 1

B : z := 1

C : y := 1

1 : await(x = 1)

2 : assert(y = 1)
1 v 2C v A

(a)

A : x := 0

B : x := 1

1 : assert(x = 1)[A,B]

(b)

A : x := 1

B : y := 1

1 : assert(y = 1)

B � 1

(c)

an error eliminating constraint; (b) C ′ |= Φ∧C ′ |= Φ′; and (c) if there is no preemption-free trace

π′ of C such that π freely transforms to π′ (i.e., π′ ∈ f(π)), then none of the transformations

θ ∈ {θ1, . . . , θk} acts across preemption points. The fact that θ1 . . . θk and C ′ can be chosen to

satisfy (c) is a consequence of the algorithm from Chapter 3.

Fixes using wait/signal statements. Some programs cannot be fixed by statement reordering

or atomic section insertion. These programs are in general outside our definition of the program

repair problem as they have bad sequential traces. However, they can be fixed by the insertion of

wait/signal statements. One such example is depicted in Figure 4.3c where the trace 1; A; B causes

an assertion failure. A possible fix is to add a wait statement before 1 and a corresponding signal

statement after B. The algorithm FixBad can be modified to insert such wait-signal statements

by also considering constraints of the form X � Y to represent that X is scheduled before Y

– the corresponding program transformation is to add a wait statement before Y and a signal

statement after X . In Figure 4.3c, the edge B → 1 represents such a constraint B � 1 – the

elimination cycle 1→ B→ 1 corresponds to the above described fix.

4.3 The Regression-free Synthesis Procedure

Algorithm 4.2 is a program-repair algorithm to fix concurrency bugs while avoiding regressions.

The algorithm maintains the current program C, and a constraint Φ that restricts possible reorder-

ings. In each iteration, the algorithm tests if C is correct and if so returns C. If not it picks a trace



61

Algorithm 4.2 Program-Repair Procedure for Concurrency
Require: A concurrent program C, all sequential traces are good
Ensure: Program C ′ such that C ′ has no bad traces

1: Φ← true;TG ← ∅; C ′ ← C
2: while true do
3: if Verify(C ′) = true then return C ′
4: Choose π from C ′ (non-deterministic)
5: if π is non-erroneous then
6: Φ← Φ ∧ LearnGood(π)
7: TG ← TG ∪ {π}
8: else
9: ([θ1, . . . , θk], C ′,Φ′)← FixBad(C ′,P ,Φ, π)

10: Φ← Φ ∧ Φ′

11: TG ←
⋃
πg∈TG{π

′
g|π′g ∈ θk ◦ . . . ◦ θ1(πg) ∧ π′g ∈ C ′}

12: end if
13: end while

π in C (line 4). If the trace is good it learns the regression-preventing constraint Φ for π and

the trace π is added to the set of good traces TG (TG is required only for the correctness proof).

If π is bad it calls FixBad to generate a new program that excludes π while respecting Φ, and

Φ is strengthened by conjunction with the error elimination constraint Φ′ produced by FixBad .

The algorithm terminates with a valid solution for all choices of C ′ in line 10 as the constraint

Φ is strengthened in each FixBad iteration. Eventually, the strongest program-constraint will

restrict the possible program C ′ to one with large enough atomic sections such that it will have

only preemption-free or sequential traces.

Theorem 4.3.1 (Soundness). Given a program C, Algorithm 4.2 returns a program C ′ with no

bad traces that preserves the sequential and correct preemption-free behaviour of C. Further,

each iteration of the while loop where a bad trace π is chosen performs a regression-free error

fix with respect to the good traces TG.

The extension of the FixBad algorithm to wait/signal fixes in Algorithm 4.2 may lead to C ′

not preserving the good preemption-free and sequential behaviours of C. However, in this case,

the input C violates the pre-conditions of the algorithm.

Theorem 4.3.2 (Fair Termination). Assuming that a bad trace will eventually be chosen in line 4

if one exists in C, Algorithm 4.2 terminates for any instantiation of FixBad .



62

Figure 4.4 The CEGIS and PACES spectrum

∃?c∗ :
∧

i∈E
P(P , c∗, i)

∃?i∗ s.t.
¬P(P , c∗, i∗)

E = E∪
{i∗}

∃?c∗ : c∗ |= Φ

∃?i∗ s.t.
¬P(P , c∗, i∗)

∃?i∗ s.t.
P(P , c∗, i∗)

Φ = Φ∧
FixBad(i∗)

Φ = Φ∧
LearnGood(i∗)

4.3.1 A Generic Program-Repair Procedure

We now explain how our program-repair algorithm relates to generic synthesis algorithms based

on counter-example guided inductive synthesis (CEGIS) [Solar-Lezama et al., 2006]. In the

CEGIS approach, the input is a partial-program P , i.e., a non-deterministic program and the

goal is to specialise P to a program C so that all behaviours of C satisfy a specification. In our

case, the partial-program would non-deterministically choose between various reorderings and

atomic sections. Let C be the set of choices (e.g., statement orderings) available in P . For a

given c ∈ C, let P(P , c, i) be the predicate that program obtained by specialising P with c

behaves correctly on the input i.

The CEGIS algorithm maintains a set E of inputs called experiments. In each iteration,

it finds c∗ ∈ C such that the ∀i ∈ E : P(P , c∗, i). Then, it attempts to find an input i∗ such

that P(P , c∗, i∗) does not hold. If there is no such input, then c∗ is the correct specialisation.

Otherwise, i∗ is added to E . This algorithm is illustrated in Figure 4.4(left). Alternatively, CEGIS

can be rewritten in terms of constraints on C. For each input i, we associate the constraint φi

where φi(c)⇔ P(P , c, i). Now, instead of E , the algorithm maintains the constraint Φ =
∧

i∈E φi.

Every iteration, the algorithm picks a c such that c |= Φ; tries to find an input i∗ such that

¬P(P , c, i) holds, and then strengthens Φ by φi∗ .

This algorithm is exactly the else branch (i.e., FixBad algorithm) of an iteration in Al-

gorithm 4.2 where i∗ and φi∗ correspond to π and FixBad(π). Intuitively, the initial variable

values in π and the scheduler choices are the inputs to our concurrent programs. This suggests

that the then branch in Algorithm 4.2 could also be incorporated into the standard CEGIS

approach. This extension (dubbed PACES for Positive and Counter-Examples in Synthesis) to

the CEGIS approach is shown in Figure 4.4(right). Here, the algorithm in each iteration may

choose to find an input for which the program is correct and use the constraints arising from it.

We discuss the advantages and disadvantages of this approach below.



63

Constraints vs. Inputs. A major advantage of using constraints instead of sample inputs is

the possibility of using over- and under-approximations. As seen in Section 4.2.1, it is sometimes

easier to work with approximations of constraints due to simplicity of representation at the cost

of potentially missing good solutions. Another advantage is that the sample inputs may have no

simple representations in some domains. The scheduler decisions are one such example – the

scheduler choices for one program are hard to translate into the scheduler choices for another.

For example, the original CEGIS for concurrency work [Solar-Lezama et al., 2008] uses ad-hoc

trace projection to translate the scheduler choices between programs.

Positive-examples and Counter-examples vs. Counter-examples. In standard program-

repair tasks, although the faulty program and the search space C may be large, the solution

program is usually “near” the original program, i.e., the fix is small. Further, we do not want

to change the given program unnecessarily. In this case, the use of positive examples and

over-approximations of learned constraints can be used to narrow down the search space quickly.

Another possible advantage comes in the case where the search space for synthesis is structured

(for example, in modular synthesis). In this case, we can use the correct behaviour displayed by

a candidate solution to fix parts of the search space.

4.4 Implementation and Experiments

We implemented Algorithm 4.2 in our tool CONREPAIR2 consisting of 3300 lines of Scala code.

The model checker CBMC [Clarke et al., 2004] is used for generating both good and bad traces,

and on an average more than 95% of the total execution time is spent in CBMC. Model checking

is far from optimal to obtain good traces, and we expect that techniques from [Sen, 2008] can be

used to generate good traces much faster. Our tool can operate in two modes: In “mixed” mode

it first analyses good traces and then proceeds to fixing the program. The baseline “badOnly”

mode skips the analysis of good traces (corresponds to the algorithm in Chapter 3).

In practice the analysis of bad traces usually generates a large number of potential reorderings

that could fix the bug. Our previous algorithm from Chapter 3 (badOnly ce1) prefers reorderings

over atomic sections, but in examples where an atomic section is the only fix, this algorithm has

2available as open-source software along with benchmarks: https://github.com/thorstent/
ConRepair

https://github.com/thorstent/ConRepair
https://github.com/thorstent/ConRepair
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Table 4.1 Results in iterations and time needed.
File LOC mixed badOnly ce1 badOnly ce2
ex1.c 60 1 2 2
ex2.c 37 2 5 6
ex3.c 35 1 2 2
ex4.c 60 1 2 2
ex5.c 43 1 8 3
ex-regr.c 30 2 2 2
paper1.c 28 1 3 33

dv1394.c 81 1 (13+4s) 51 (60s) 51 (9s)
iwl3945.c 66 1(3+2s) 2(2s) 2(2s)
lc-rc.c 40 10 (2+7s) 179 (122s) 203 (134s)
rtl8169.c 405 7 (10+45m) >100 (>6h) 8 (54m)
usb-serial.c 410 4 (56+20m) 6 (38m) 6 (38m)

poor performance. To address this we implemented a heuristic (ce2) that places atomic sections

before having tried all possible reorderings, but this can result in solutions having unnecessary

atomic sections.

The fall back case in Algorithm 4.1 severely limits further fixes – it forces further fixes

involving the same statements to be atomic sections. Hence, in our implementation, we omit

this step and prefer an unsound algorithm (i.e., not necessarily regression-free) that can fix more

programs with reorderings. While the implemented algorithm is unsound, our experiments show

that even without the fallback, in our examples, there is no regression except for one artificial

example (ex-regr.c) constructed precisely for that purpose.

Benchmarks. We evaluate our tool on a set of examples that model real bugs found and fixed

in Linux device drivers by their developers. To this end, we explored a history of bug fixes in

the drivers subtree of the Linux kernel and identified concurrency bugs. We further focused our

attention on a subset of particularly subtle bugs involving more than two racing threads and/or a

mix of different synchronisation mechanisms, e.g., lock-based and lock-free synchronisation.

Approximately 20% of concurrency bugs that we considered satisfy this criterion. Such bugs

are particularly tricky to fix either manually or automatically, as new races or deadlocks can be

easily introduced while eliminating them. Hence, these bugs are most likely to benefit from good

trace analysis.

Table 4.1 shows our experimental results: the iterations and the wall-clock time needed to

find a valid fix for our mixed algorithm and the two heuristics of the badOnly algorithm. For the

mixed algorithm the time is split into the time needed to generate and analyse good traces (first
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number) and the time needed for the fixing afterwards. All measurements were done on an Intel

core i5-3320M laptop with 8GB of RAM.

Detailed analysis. The artificial examples ex1.c to ex5.c are used for testing and take

only a few seconds; example paper1.c is the one in Figure 4.1a. Example ex-regr.c was

constructed to show unsoundness of the implementation. Example usb-serial.c models

the USB-to-serial adapter driver. Here, from the good traces the tool learns that two statements

should not be reordered as it will trigger another bug. This prompts them to be reordered above a

third statement together, while the badOnly analysis would first move one, find a new bug, and

then fix that by moving the other statement. Thus, the good trace analysis saves us two rounds of

bug fixing and reduces bug fixing time by 18 minutes.

The rtl8169.c example models the Realtek 8169 driver containing 5 concurrency bugs.

One of the reorderings that the tool considers introduces a new bug; further, after doing the

reordering, the atomic section is the only valid fix. The good trace analysis discover that the

reordering would lead to a new bug, and thus the algorithm does not use it. But, without good

traces, the tool uses the faulty reordering and then ce1 takes a very long time to search through

all possible reorderings and then discover that an atomic section is required. The situation is

improved when using heuristic ce2 as it interrupts the search early. However, the same heuristic

has an adverse effect in the dv1394.c example: by interrupting the search early, it prevents

the algorithm from finding a correct reordering and inserts an unnecessary atomic section. The

dv1394.c example also benefits from good traces in a different way than the other examples.

Instead of preventing regressions, they are used to obtain hints as to what reorderings would

provide coverage for a specific data-flow into assertion edge. Then, if a bad trace is encountered

and can be fixed by the hinted reordering, the hinted reordering is preferred over all other possible

ones. Without hints the dv1394.c example would require 5 iterations. Though hints are not

part of our theory they are a simple and logical extension.

Example lc-rc.c models a bug in an ultra-wide band driver that requires two reorderings

to fix. Though there is initially no deadlock, one may easily be introduced when reordering

statements. Here, the good-trace analysis identifies a dependency between two await statements

and learns not to reorder statements to prevent a deadlock. Without good traces, a large number

of candidate solutions that cause a regression are generated.
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Chapter 5

Synthesis of Locks and Other

Synchronisation Primitives

5.1 Problem Statement and Illustrative Examples

In Chapters 3 and 4 we introduced a technique to repair concurrent programs using statement

reordering and atomic sections. However, statement reordering only fixes a certain type of bugs

and atomic sections are not directly implementable. In this chapter we introduce a technique that

is able to place locks, wait-signal and barriers in the code. These are common synchronisation

primitives supported in many programming languages.

In the two previous chapters we generalised a concurrent trace into a set of traces that under-

approximates the target trace sets. In this chapter, we present a succinct, complete representation

of such concurrent trace sets, which can drive diverse verification, fault localisation, repair, and

synthesis techniques for concurrent programs. The representation is complete in the sense that it

encodes every trace in the trace set of interest.

Neighbourhood computation. In Chapters 3 and 4 we used partial-order neighbourhoods,

which are not able to represent exactly all bad interleavings of a trace. In this chapter we

move to neighbourhoods that allow disjunctions in the HB-formula. Given a trace π and a

correctness specification, we present a method to generate an HB-formula ϕB representing the

bad neighbourhood of π (see Section 2.2). To generate ϕB , we first encode all the bad executions

in L(Nπ) in a quantifier-free first-order formula Φ such that an execution π is a model of Φ iff π
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is a bad execution in L(N b
π). We then incrementally construct ϕB. Initially, ϕB is set to false.

In each step: (1) we invoke an SMT solver to obtain a model for Φ that does not belong to the

language of the subset ofN b
π represented by the current ϕB , (2) generalise the trace of the model

into an HB-formula ϕ, and (3) update ϕB by adding ϕ as a disjunct. We iterate until there is no

new model of Φ. The trace generalisation used in each iteration has the following properties: (a)

the model obtained in the iteration satisfies ϕ, and (b) any trace inNπ that satisfies ϕ is bad. The

final HB-formula obtained is an exact representation of N b
π .

While an exact representation is a worthy goal, the corresponding ϕB may not be succinct.

To gain succinctness and utility, we trade in exactness. In particular, we permit the inclusion of

infeasible traces to obtain a succinct HB-formula representing a sound overapproximation of

N b
π . The overapproximation of N b

π is sound in the sense that it is guaranteed to not include any

good traces. To generate such a succinct HB-formula, we enhance the above algorithm. We use

data-flow analysis and minimal unsatisfiability core (unsat core) computation for generalising

the trace of the model into an HB-formula ϕ in step (2) of each iteration. This new trace

generalisation step has the following properties: (a) the model obtained in the iteration satisfies

ϕ, and (b) any trace in Nπ satisfying ϕ is either bad or infeasible.

Complementing ϕB, the succinct representation of a sound overapproximation of N b
π yields

ϕG, a succinct representation of a sound overapproximation of N g
π . Note that complementing

the exact representation of N b
π does not yield an exact representation of N g

π . In fact, our

existing methodology cannot produce an exact representation of N g
π . Figure 5.1 shows the

exact representation of N b
π and the representations for sound overapproximations of N g

π and N b
π

obtained by our method for the example trace shown.

We implemented the above algorithm as a tool TARA and used it to generate (succinct)

representations of trace sets of programs drawn from the software verification competition (SV-

Comp) [Beyer, 2014] and the regression suites of ESBMC [Morse et al., 2014] and CONREPAIR

(Chapter 4).

Synchronisation synthesis. We present a novel algorithm that uses ϕG to synthesise syn-

chronisation for eliminating the bad neighbourhood of π. The algorithm proceeds by apply-

ing rewrite rules to derive synchronisation primitives such as mutex locks, barriers, shared

exclusive locks and wait-signal statements from easily-identifiable patterns in ϕG. For ex-

ample, a missing mutex lock in the example in Figure 5.1 that ensures the statements at TW[1]
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Figure 5.1 Online banking: This trace is drawn from a program consisting of three threads, one
for withdrawing money, one for depositing money, and one for checking consistency of the bank
account after completion of a withdrawal and a deposit. (In all the examples in this chapter, we represent traces

using typed global variable declarations/initialisations, followed by each thread’s typed local variable declarations and statements. Note that

this representation depicts a trace and not a program.)

init : x := balance; deposited := 0; withdrawn := 0

thread_withdraw
TW[1] : temp := balance;
TW[2] : balance := temp− withdrawal;
TW[3] : withdrawn := 1

thread_deposit
TD[1] : temp2 := balance;
TD[2] : balance := temp2+ deposit;
TD[3] : deposited := 1

thread_checkresult
TC[1] : assume(deposited = 1 ∧ withdrawn = 1);
TC[2] : assert(balance = x+ deposit− withdrawal)

Exact representation of N b
π:

hb(TW[1],TD[2]) ∧ hb(TD[1],TW[2]) ∧ hb(TW[3],TC[1]) ∧ hb(TD[3],TC[1])
Exact representation of N g

π :
(hb(TD[2],TW[1]) ∨ hb(TW[2],TD[1])) ∧ hb(TW[3],TC[1]) ∧ hb(TD[3],TC[1])
Representation of sound overapproximation of N b

π:
hb(TW[1],TD[2]) ∧ hb(TD[1],TW[2])
Representation of sound overapproximation of N g

π :
hb(TD[2],TW[1]) ∨ hb(TW[2],TD[1])
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and TW[2] in thread_withdraw do not interfere with the statements TD[1] and TD[2] in

thread_deposit is identified by the pattern hb(TD[2],TW[1]) ∨ hb(TW[2],TD[1]) in ϕG. We

have implemented this algorithm as an extension of our tool TARA and used it to successfully

synthesise synchronisation for our benchmarks.

We further demonstrate the applicability of our representations of good and bad neigh-

bourhoods of a trace to bug summarisation and verification based on counterexample-guided

abstraction refinement (CEGAR).

Bug summarisation. Error detection tools based on model checking and static analyses typic-

ally provide counterexample traces to help with program debugging. However, these traces can

be long and encumbered with unnecessary data, providing little insight about the actual bug. We

use ϕB, the representation for a sound overapproximation of a trace’s bad neighbourhood, for

counterexample and bug summarisation. The HB-formula ϕB encodes relevant ordering inform-

ation about all counterexamples in the neighbourhood of π and can be viewed as a stand-alone

counterexample summary. While this can already be useful feedback for a human debugger, we

present a set of rules to infer specific bugs such as data races, atomicity violations, two-stage

access bugs and define-use order violations. These rules work by identifying particular patterns

in ϕB and combining them with some lightweight data-flow information. We have extended

TARA for bug summarisation and evaluated it on our benchmarks.

Accelerating CEGAR. We also recognise an application of our representation of bad neigh-

bourhoods of abstract counterexamples in accelerating CEGAR for concurrent programs. CE-

GAR often takes many iterations to find the right predicates for proving correctness of a program.

There is a number of prior work to enhance the CEGAR loop by finding better predicates,

e.g. [Beyer et al., 2007; Sharma et al., 2012]. In the setting of hardware model-checking (for

circuits), Glusman et al. [Glusman et al., 2003] extend the CEGAR loop by adding several predic-

ates if a spurious counterexample is found; they generate all counterexamples of the same length

and gather information about valuations crucial to the incorrectness of the counterexamples. In a

similar setting, Wang et al. [Wang et al., 2006] improve the CEGAR by introducing a technique

to eliminate all spurious counterexamples for an invariant. Sakunkonchak et al. [Sakunkonchak

et al., 2007] apply CEGAR optimisations to software model checking and speed up the search

for predicates that make the counterexample spurious. However, they do not use interpolants and
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instead search the counterexample for conflicting predicates. Bjesse et al. [Bjesse and Kukula,

2004] use predicates obtained from CEGAR to guide bounded-model checking (BMC) and

extend its reach.

The choice of refinement procedure usually determines the number of iterations necessary.

Many heuristics have been proposed to find relevant predicates quickly, e.g., [Beyer et al.,

2007]. This problem is compounded in concurrent program verification, where the existence of a

large number of interleavings can delay the discovery of interesting spurious counterexamples

that lead to relevant predicates. We present a new predicate learning procedure that uses the

HB-formula ϕB representing the bad neighbourhood of a spurious counterexample of an abstract

concurrent program. In each iteration of the CEGAR loop, our procedure refines the abstraction

to eliminate multiple spurious abstract counterexamples drawn from ϕB , using a method similar

to beautiful interpolants [Albarghouthi and McMillan, 2013]. We have integrated our TARA-

based refinement procedure within SATABS [Clarke et al., 2005] and have been able to reduce

the number of iterations needed to verify various example programs.

Highlights. We introduce a novel representation for concurrent trace sets based on HB-formulæ

(Section 5.2). HB-formulæ have several useful properties. They can express arbitrary finite trace

sets. They enable efficient computation and concise expression of unions over trace sets. This is

exploited by our tool TARA to compute succinct representations of sound overapproximations of

good and bad neighbourhoods of a trace. HB-formulæ are an intuitively appealing representation

for trace sets. They can reveal specific patterns of causality relations between events that can

drive diverse verification, fault localisation, repair, and synthesis techniques for concurrent

programs. We demonstrate the use of our tool in three applications — synchronisation synthesis

(Section 5.3), bug summarisation (Section 5.4), and CEGAR acceleration (Section 5.5).

5.2 Computing Good and Bad Neighbourhoods

In this section, we present an algorithm for computing an exact representation for the bad

neighbourhood of a trace. However, as this representation may be unwieldy and complex,

we further provide an algorithm to produce sound overapproximations of N b
π and N g

π , i.e., to

find succinct HB-formulæ ϕG and ϕB such that N g
π ⊆ [[ϕG]], N b

π ⊆ [[ϕB]], and [[ϕG]] ∩ N b
π =
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[[ϕB]]∩N g
π = ∅. Note that ϕG∧ϕB is not necessarily false, because ϕG∧ϕB may still represent

infeasible traces.

We use two different formalisms to express statements.

• Guarded actions. Here, a statement from thread Ti is either a guarded action assume(G)→

assign or an assertion assert(G), where G is a Boolean expression over Vi and assign

is a parallel assignment var 1, . . . , var m := expr1, . . . , exprm of expressions over Vi to

variables in Vi. We use just := to indicate no assignment is happening (i.e. the statement

equals assume(G)).

• Transition predicates. Here, a statement from thread Ti is a predicate over variables from

Vi ∪ V ′i where V ′i contains primed versions of variables in Vi. Intuitively, variables from

Vi and V ′i represent the values of program variables before and after the execution of

the statement, respectively. For example, the assignment x := x + y is represented as

x′ = x + y. The advantage of this formalism is that it can express non-deterministic

statements which we need to model abstract programs in Section 5.5. Assertions are

represented as before, i.e., as assert(G), where G is a Boolean expression over Vi.

The transition predicate formalism is used exclusively for CEGAR accelaration in Section 5.5.

For traces of programs we use the guarded actions formalism.

Translating traces to guarded actions. In Figure 5.2 we present a translation function that

translates statements in traces into guarded actions. We do not consider havoc, input and output

statements as they are used primarily for the implicit specification. To indicate what branch the

trace took for loops and conditionals we use the words then, else, loop and exitloop. Statements

inside an atomic section are merged into one translated statement.

Encoding bad executions. Given a trace π, our algorithm is based on constructing a quantifier

free first-order formula that represents all bad executions in L(Nπ). We use the concurrent trace

program encoding [Wang et al., 2009] which is based on a concurrent single static assignment

(CSSA) form of traces. We recall the encoding below to make the presentation self-contained.

We present the encoding for the case where statements are expressed as guarded actions; the

case where statements are expressed as transition predicates is similar. Given a trace π, we first

rewrite it into the CSSA form.
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Figure 5.2 Translation of statement with identifier ` to guarded action
ShVar := LoExp = true→ ShVar := LoExp
LoVar := ShExp = true→ LoVar := ShExp

if (ShExp) then = ShExp → :=
if (ShExp) else = ¬ShExp → :=

while ShExp loop = ShExp → :=
while ShExp exitloop = ¬ShExp → :=

assert(ShExp) = assert(ShExp)
await(ShExp) = ShExp → :=

lock(LkVar) = LkVar = 0→ LkVar := tid(`)
unlock(LkVar) = LkVar = tid(`)→ LkVar := 0
wait(CondVar) = CondVar = 1→ :=

wait_not(CondVar) = CondVar = 0→ :=
signal(CondVar) = true→ CondVar := 1
reset(CondVar) = true→ CondVar := 0

wait_reset(CondVar) = CondVar = 1→ CondVar := 0
assume(GrdVar) = GrdVar = true→ :=

assume_not(GrdVar) = GrdVar = false→ :=
GrdVar ← GrdExpr = true→ GrdVar := GrdExpr

• For each variable v, we introduce a unique name vw,` for each event ` that may change the

value of v (here, w stands for “write”). Further, for each variable v, we introduce a unique

name vι to represent the value of v at the start of an execution.

• For each event ` that reads a variable v, we replace v as follows:

– If v is a local variable, we replace v by vw,`′ where `′ is the most recent event from

the thread that writes to v; and

– If v is a shared variable, we replace v by vr,` (where r stands for “read”) and we store

an additional constraint, where vr,` = π(vι, vw,`1 , vw,`2,, . . . , vw,``) where `i ranges

over all events from other threads that write to v and the most recent event from the

same thread that writes to v.

The π-functions above are analogous to the φ-functions used to express joins in sequential

single static assignment encodings, i.e., vr,` = π(vι, vw,`1 , . . . , vw,``) expresses that ` reads

either the initial value of v, or the value written by one of `1, . . . , ``.

• Further, for each event `, we define the condition that ` is feasibly reached. If ` is the first

event in a thread, we set cond(`) = true. Otherwise, cond(`) depends on the previous

event from the same thread in π (say `′). If `′ is an assertion, we let cond(`) = cond(`′).

Otherwise, `′ is a guarded action assume(G)→ assign, and we let cond(`) = cond(`′)∧G.

Example 5.2.1. In the running example from Figure 5.1, the statement TW[1] : temp := balance
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would be encoded as tempw,TW[1] = balancer,TW[1] ∧ balancer,TW[1] = π(balanceι, balancew,TD[2]).

Given a trace π rewritten in the CSSA form, the following constraints encode executions in

the neighbourhood Nπ of π:

• Thread orders. In any execution in the neighbourhood of π, the order of events in

each thread is the same as in the trace π. We define ΦPO =
∧
{hb(`i, `j) | tid(`i) =

tid(`j) ∧ `i <π `j}.

• Variable assignments. This part of the encoding is a direct translation of the assignments

in each event into constraints. We have ΦVD =
∧
`

∧m
i=1 v

i
w,` = expri, where ` ranges over

events of the form T[`] : stmt with stmt being assume(G)→ v1
w,`, . . . , v

m
w,` := expr1, . . . , exprm.

• π-constraints. Each π-constraint chooses a value for a read of a shared variable from

possible writes. Formally, each condition vr,` = π(vι, vw,`1 , . . . , vw,``) is rewritten as

[vr,` = vι ∧
∧
i hb(`, `i)] ∨

∨`
i=1[vr,` = vw,`i ∧ cond(`i) ∧ hb(`i, `) ∧

∧
j 6=i(hb(`j, `i) ∨

hb(`, `j))]. Intuitively, the above formula states that: (a) the value of v read by ` is

either the initial value of v (denoted as vι) or written by one of `1, . . . , ``; (b) if the

value is the initial value, all `i happen after `; and (c) if the value is written by `i,

then `i is feasibly reached and all conflicting writes either happen before `i or after `.

We denote by ΦPI the conjunction of all such π-constraints. For example, for the π-

function from Example 5.2.1, the corresponding constraint is (balancer,TW[1] = balanceι ∧

hb(TW[1],TD[2])) ∨ (balancer,TW[1] = balancew,TD[2] ∧ hb(TD[2],TW[1])).

• Correctness condition. For correctness, if an assertion event ` = T[`] : assert(G`)

is feasibly reached, then G` must hold. Hence, the correctness condition is ΦCOR =∧
`(cond(`)⇒ G`) where ` ranges over assertion events.

The final encoding for bad executions is given by ΦCTP(π) = ΦPO ∧ΦVD ∧ΦPI ∧ ¬ΦCOR. We

also encode the complementary correctness condition as ΦCTP(π) = ΦPO ∧ΦVD ∧ΦPI ∧ΦCOR.

For convenience, we use an auxiliary formula ΦFEA to represent the condition that each

assumption must hold. We have ΦFEA =
∧
` cond(`) where ` ranges over all events.

An execution π corresponds to a model V of ΦCTP if: (a) the value of each vι in V is the

initial value of v in π; (b) the value of each vr,` in V is the value of v read by ` in π; (c) the value

of each vw,` in V is the value of v written by ` in π; and (d) the value of hb(`i, `j) in V is true if

and only if `i occurs before `j in π.
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Theorem 5.2.2. Given a trace π, (a) for every model V of ΦCTP(π) there is a bad execution

π ∈ L(N b
π) such that π corresponds to V; and (b) for every π ∈ L(N b

π) there is a model V of

ΦCTP(π) such that π corresponds to V .

Bad neighbourhood computation. Armed with ΦCTP — an SMT encoding of bad executions

in the neighbourhood of a trace π — we now present an algorithm to compute a representation

of N b
π . Algorithm 5.1 proceeds by repeatedly computing satisfying assignments to ΦCTP using

an SMT solver (lines 2 and 3), and accumulating the HB-formulæ in the models (lines 4 and 5).

We conjoin ΦCTP with additional constraints to ensure that the same satisfying assignments are

not returned each time.

Algorithm 5.1 Computing the bad neighbourhood of a trace
Require: Trace π
Ensure: HB-formula ϕB such that N b

π = [[ϕB]].
1: Φ← ΦCTP(π); ϕB ← false

2: while Φ ∧ ¬ϕB is satisfiable do
3: V ← satisfying assignment for Φ ∧ ¬ϕB
4: ϕ′B ←

∧
{hb(`, `′) | V |= hb(`, `′)}

5: ϕB ← ϕB ∨ ϕ′B
6: end while
7: return ϕB

Overapproximating bad neighbourhoods. While Algorithm 5.1 computes an exact repres-

entation of N b
π , it is inefficient in practice. Hence, we forgo the goal of an exact representation.

Instead, we compute a sound overapproximation of N b
π , which may include infeasible traces, but

not good traces. Given trace π, Algorithm 5.2 computes sound overapproximations of N b
π and

N g
π . Algorithm 5.2 performs several optimisations with respect to Algorithm 5.1 to accumulate

weaker constraints from each model of ΦCTP , i.e., Algorithm 5.2 attempts to accumulate larger

subsets of Nπ into ϕB in each iteration.

• Data-flow analysis. From the model V of ΦCTP(π), the data-flow analysis retains those

happens-before constraints (ϕ′B) that are necessary to preserve the data-flow into the failing

assertion in the corresponding execution. We use the function DF V(`) (line 5) to compute

constraints that ensure ` can be feasibly reached and can read the same variable values as in

V . Given the execution corresponding to V , let reads(`), readsG(`), and srcEvent(v, `)

represent the variables read by `, the variables read by ` in the guard (if ` is not a guarded
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assignment, readsG(`) = ∅), and the event that writes the value of v read by `. We have

DF V(`) = DF 1
V(`) ∪ DF 2

V(`) where:

– we let DF 1
V(`) =

⋃
v∈reads(`)

[
{(v, srcEvent(v, `), `)} ∪ DF V(srcEvent(v, `))

]
;

and

– DF 2
V(`) =

⋃
`′∈E,v∈readsG(`′)

[
{(v, srcEvent(v, `′), `′)} ∪ DF V(srcEvent(v, `′))

]
where event `′ ranges over E = {`′ | tid(`) = tid(`′) ∧ V |= hb(`′, `)}.

Intuitively, DF 1
V ensures that ` can read the same values as in V and DF 2

V ensures that ` is

feasibly reached. We then get additional constraints ADF necessary to ensure conflicting

writes do not affect the data-flow into the assertion (line 6).

• Unsatisfiable core computation. Next, we perform two rounds of generalisation on

ϕB′ through unsatisfiable core computation. In the first round, we construct a formula

ϕB′ ∧ Choices(V) ∧ ΦCTP(π) where Choices(V) fixes the initial variable values to the

ones from V (line 10). A satisfying assignment to this formula models executions where no

failing assertion is feasibly reached. Therefore, if the formula is unsatisfiable, the happens-

before constraints from the unsatisfiable core (line 12) ensure that all executions satisfying

Choices(V) are bad. Note that if all statements are deterministic, the above formula is

always unsatisfiable. In the second round (line 10), we follow a similar procedure, but

with the formula ϕB′ ∧ ΦFEA ∧ ΦCTP . Here, a model is a good execution and hence,

the constraints from the unsatisfiable core (line 10) ensure that any feasible execution is

necessarily bad.

Roughly, the first round allows us to generalise the HB-formula in the case of data-

dependent bugs. The second round lets us generalise further in the case of data-independent

bugs.

The sound overapproximation, ϕG, of N g
π is obtained by complementing ϕB (line 22). Note

that ϕB returned is in disjunctive normal form (DNF), while ϕG is in conjunctive normal form

(CNF).

Theorem 5.2.3. For a trace π, if Algorithm 5.2 returns (ϕB, ϕG), thenN b
π ⊆ [[ϕB]],N g

π ⊆ [[ϕG]],

and [[ϕG]] ∩N b
π = [[ϕB]] ∩N g

π = ∅.

The complexity of Algorithm 5.2 originates from SMT check in line 2, which is NP-complete.

A comparison with Algorithm 3.1 is not meaningful, because Algorithm 5.2 basically solves the

verification problem for a straight-line program.
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Algorithm 5.2 Computing sound overapproximations of the bad and good neighbourhoods of a
trace
Require: Trace π
Ensure: HB-formulæ (ϕB, ϕG) such that N g

π ⊆ [[ϕG]], N b
π ⊆ [[ϕB]], and [[ϕG]] ∩ [[ϕB]] = ∅.

1: Φ← ΦCTP(π); ϕB ← false

2: while Φ ∧ ¬ϕB is satisfiable do
3: V ← satisfying assignment for Φ ∧ ¬ϕB
4: . Data-flow analysis
5: DF ← DF V(`∗) where `∗ is the failing assertion in V
6: ADF ←

⋃
(v,`i,`j)∈DF

⋃
{`k|`k writes v}

(
{(v, `k, `i) |

7: V |= hb(`k, `i)} ∪ {(v, `j, `k) | V |= hb(`j, `k)}
)

8: ϕB′ ←
∧

(v,`i,`j)∈DF∪ADF hb(`i, `j)
9: . Unsat-core computation

10: Choices(V)←
∧
v∈V vι = V [vι]

11: if ϕB′ ∧ Choices(V) ∧ ΦCTP(π)) is unsatisfiable then
12: ϕB′ ← MinUNSATCore(Soft← ϕB′ ,
13: Hard← Choices(V) ∧ ΦCTP(π))
14: end if
15: if ϕB′ ∧ ΦFEA(π) ∧ ΦCTP(π)) is unsatisfiable then
16: ϕB′ ← MinUNSATCore(Soft← ϕB′ ,
17: Hard← ΦFEA(π) ∧ ΦCTP(π))
18: end if
19: ϕB ← ϕB ∨ ϕB′
20: end while
21: ϕG ← ¬ϕB
22: return (ϕB, ϕG)
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5.3 Synchronisation Synthesis

We use the representation of a sound overapproximation of the good neighbourhood of a trace

π (returned as ϕG by Algorithm 5.2) to synthesise synchronisation that eliminates the bad

neighbourhood of π. Missing synchronisation primitives such as locks, barriers, and wait-signal

statements present themselves as easily identifiable HB-formula patterns in ϕG. Our algorithm

derives the required synchronisation using rules that rewrite such patterns into the corresponding

primitives.

Synchronisation primitives. We first describe various synchronisation primitives that we

derive. Recall from Section 2.2.1 that we use the notation T[`] to refer to events labelled with

T[`], and the notations T[` : `′] and T[L] to refer to corresponding event sequences.

1. Wait-Signal. A wait-signal WaitSignal
(
T2[`2],T1[`1]

)
denotes a wait to make T2[`2] wait

for T1[`1] to complete, and a signal to make T1[`1] signal T2[`2] upon completion.

2. Locks. A lock lock(T1[L1], . . . ,Tn[Ln]) denotes a common lock protecting each event se-

quence Ti[Li], i ∈ [1, n], to ensure that these event sequences cannot execute concurrently.

3. Barriers. A barrier Barrier
(
T1[`1], . . . ,Tn[`n]

)
at location `i of thread Ti, i ∈ [1, n],

prevents each thread Ti from proceeding beyond `i until every other thread Tj reaches `j.

In other words, Ti cannot execute the event at `i until every other Tj executes the event at

`j − 1.

4. Shared-exclusive locks. A shared-exclusive lock (or, a readers-writers lock)

ShExLock
(
Sh :Ts1[Ls1], . . . ,Tsn[Lsn], Ex :Tx1[Lx1], . . . ,Txm[Lxm]

)
permits concurrent exe-

cution of all event sequences Tsi[Lsi], i ∈ [1, n], while preventing concurrent execution

of (a) any two Txi[Lxi] and Txj[Lxj] with i 6= j, and (b) any Txi[Lxi] and Tsj[Lsj].

Rewriting ϕG to derive synchronisation. During the rewrite process below, we use disjunct-

ive formulæ (denoted by ψ) where each disjunct is either an atomic hb-constraint of the form

hb(Ti[`i],Tj[`j]), or a synchronisation primitive. For a trace π, we repeatedly apply the rewrite

rules from Figure 5.3 on ϕG (in CNF, as returned from Algorithm 5.2) until no more rules

are applicable. The ADD.WAITSIGNAL, ADD.LOCK and ADD.BARRIER rules introduce the

wait-signal, locks, and barrier primitives. The MERGE.LOCKS rule merges locks across pairs of

threads, while the MERGE.LOCKS.DEADLOCKS rule merges locks that can potentially lead to

deadlocks. The MULTITHREAD.LOCK and MULTITHREAD.BARRIER rules inductively derive
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Figure 5.3 Rewrite rules for synchronisation synthesis
hb(T1[`

′
1],T2[`2]) ∨ hb(T2[`

′
2],T1[`1]) ∨ ψ `1 ≤ `′1 `2 ≤ `′2

lock(T1[`1 : `
′
1],T2[`2 : `

′
2]) ∨ ψ

ADD.LOCK

hb(T1[`1],T2[`2]) ∨ ψ
WaitSignal

(
T2[`2],T1[`1]

)
∨ ψ

ADD.WAITSIGNAL

(
hb(T1[`1 − 1],T2[`2]) ∨ ψ

)
∧
(
hb(T2[`2 − 1],T1[`1]) ∨ ψ

)
Barrier

(
T1[`1],T2[`2]

)
∨ ψ

ADD.BARRIER

(
lock(T1[L1], ..,Tn[Ln]) ∨ ψ

)
∧
∧n
i=1 lock(Ti[Li],Tn+1[Ln+1]) ∨ ψ

lock(T1[L1], ..,Tn[Ln+1]) ∨ ψ
MULTITHREAD.LOCK

(
lock(T1[L1],T2[L2]) ∨ ψ

)
∧
(
lock(T1[L1

′],T2[L2
′]) ∨ ψ

)
T1[L1

′] ⊆ T1[L1] T2[L2
′] ⊆ T2[L2]

lock(T1[L1],T2[L2]) ∨ ψ
MERGE.LOCKS

`a1 ≤ `b1 ≤ `a
′

1 `b2 ≤ `a2 ≤ `b
′

2(
lock(T1[`

a
1, `

a′

1 ],T2[`
a
2, `

a′

2 ]) ∨ ψ
)
∧
(
lock(T1[`

b
1, `

b′

1 ],T2[`
b
2, `

b′

2 ]) ∨ ψ
)

lock(T1[`
a
1,max(`a

′

1 , `
b′

1 )]],T2[`
b
2,max(`b

′

2 , `
a′

2 )]) ∨ ψ
MERGE.LOCKS.DEADLOCKS

(
Barrier

(
T1[`1], . . . ,Tn[`n]

)
∨ ψ
)
∧
∧n
i=1

(
Barrier

(
Ti[`i],Tn+1[`n+1]

)
∨ ψ
)

Barrier
(
T1[`1], . . . ,Tn+1[`n+1]

)
∨ ψ

MULTITHREAD.BARRIER

∧n
i=1

∧m
j=1

(
lock(Tsi [Lsi ],Txj [Lxj ]) ∨ ψ

) ∧m
i=1

∧m
j=1

(
lock(Txi [Lxi ],Txj [Lxj ]) ∨ ψ

)
ShExLock

(
Sh :Ts1 [Ls1 ], . . . ,Tsn [Lsn ], Ex :Tx1 [Lx2 ], . . . ,Txm [Lxm ]

)
∨ ψ

ADD.SHAREDEXCLUSIVELOCK

locks and barriers spanning multiple threads. The ADD.SHAREDEXCLUSIVELOCK rule derives

a shared exclusive lock from already inferred locks. Since ϕG, as generated by Algorithm 5.2, is

already optimised, we do not merge WaitSignal primitives.

We explain two of the above rules here. The premise of the ADD.LOCK rule asks for two

event sequences T1[`1 : `′1] and T2[`2 : `′2] such that one of them has to finish execution before the

other starts, i.e., hb(T1[`
′
1],T2[`2])∨hb(T2[`

′
2],T1[`1]). Equivalently, the two event sequences do

not execute concurrently. This is enforced by the lock lock(T1[`1 : `′1],T2[`2 : `′2]). The premise

of the MERGE.LOCKS.DEADLOCKS rule looks for two already derived locks, acquired by two

threads in different orders (which may lead to a deadlock), and merges these locks into one.

Note that the rewriting process always terminates. However, depending on the order of

rules applied, we may obtain different formulæ. Upon termination, we get a CNF formula over

synchronisation primitives. We pick a set S of synchronisation primitives, consisting of one

primitive from each conjunct. Let CS be the program obtained by inserting each synchronisation
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primitive in S into the corresponding position in the original concurrent program C.

Theorem 5.3.1 (Soundness of rewrite rules). Given a trace π, let CS be obtained as described

above. Let π ∈ L(Nπ) be a deadlock-free execution of CS . Then π /∈ L(N b
π), i.e., π is not bad.

While CS is not guaranteed deadlock-free, we perform simple consistency checks when

choosing S to prevent obvious deadlocks. For example, we ensure that WaitSignal primitives

in S do not introduce ordering cycles over locs(π).

Note that our rewrite rules are by no means complete. It may be possible to derive the

above synchronisation primitives using different rules that represent other scenarios. Further,

our rewrite system can also be extended to other synchronisation primitives. We now present

examples illustrating the application of our rules.

Example 5.3.2. For the example trace shown in Figure 5.1, ϕG is given by hb(TD[2],TW[1]) ∨

hb(TW[2],TD[1]). Applying the ADD.LOCK rewrite rule yields lock(TW[1 : 2],TD[1 : 2]).

Example 5.3.3. For the example trace shown in Figure 5.4(a), ϕG is given by (hb(TF[4],TS[3])∨

hb(TS[4],TF[3])) ∧ hb(TS[4],TF[5]) ∧ hb(TF[4],TS[5]). Applying the ADD.LOCK rewrite rule

yields: lock(TF[3 : 4],TS[3 : 4])∧hb(TS[4],TF[5])∧hb(TF[4],TS[5]). Applying the ADD.BARRIER

rule yields: lock(TF[3 : 4],TS[3 : 4]) ∧ Barrier
(
TF[5],TS[5]

)
.

Example 5.3.4. For the example trace shown in Figure 5.4(b), ϕG is as shown. The disjuncts ψ1

and ψ2 are not relevant for this example except for the fact that ψ1 is common to the 3rd and 4th

conjuncts, ψ2 is common to the 5th and 6th conjuncts and ψ1 6= ψ2.

• Applying ADD.LOCK yields: hb(TI[2],TF[2])∧hb(TI[2],TS[2])∧(lock(TF[4],TS[3 : 4])∨

ψ1)∧(lock(TF[3 : 4],TS[4])∨ψ1)∧(lock(TF[4],TS[3 : 4])∨ψ2)∧(lock(TF[3 : 4],TS[4])∨

ψ2).

• Applying MERGE.LOCKS next yields: hb(TI[2],TF[2])∧hb(TI[2],TS[2])∧(lock(TF[3 : 4],

TS[3 : 4]) ∨ ψ1) ∧ (lock(TF[3 : 4],TS[3 : 4]) ∨ ψ2).

• Finally, applying the ADD.WAITSIGNAL rule yields:

WaitSignal
(
TF[2],TI[2]

)
∧WaitSignal

(
TS[2],TI[2]

)
∧ (lock(TF[3 : 4],TS[3 : 4]) ∨ ψ1) ∧

(lock(TF[3 : 4],TS[3 : 4]) ∨ ψ2).

Note that the MERGE.LOCKS rule does not apply to the last two conjuncts as ψ1 6= ψ2. One pos-

sible solution for S is {WaitSignal
(
TF[2],TI[2]

)
,WaitSignal

(
TS[2],TI[2]

)
, lock(TF[3 : 4],TS[3 : 4])}.
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Figure 5.4 Example programs

init: value1 := 1; value2 := 2;
value3 := 4; value4 := 8; sum := 0;
flag1 := 0; flag2 := 0

thread_firsthalf
TF[1] : localsum1 := value1;
TF[2] : localsum1 := localsum+ value2;
TF[3] : temp1 := sum;
TF[4] : sum := temp1+ localsum1;
TF[5] : value1 := value1/sum;
TF[6] : value2 := value2/sum;
TF[7] : flag1 := 1

thread_secondhalf
TS[1] : localsum2:=value3;
TS[2] : localsum2:=localsum2+ value4;
TS[3] : temp2:=sum;
TS[4] : sum:=temp2+ localsum2;
TS[5] : value3:=value3/sum;
TS[6] : value4:=value4/sum;
TS[7] : flag2:=1

thread_checkresult
TC[1] : assume(flag1 = 1 ∧ flag2 = 1);
TC[2] : assert(value1 + value2 + value3 +
value4 = 1)

ϕG: (hb(TF[4],TS[3]) ∨ hb(TS[4],TF[3])) ∧
hb(TS[4],TF[5]) ∧ hb(TF[4],TS[5])

(a) Normalisation. The goal of the program this trace
is drawn from is to normalise a set of values such
that their sum computes to 1. The program consists
of three threads. The first and second thread process
one half each of the set of values. Once the first and
second thread run to completion, the third thread
checks if the sum of the normalised values is 1.

init: intrmask:=0; initdone:=0;
workqueueitems:=0; interrupts:=0

thread_interruptmaskset
TI[1] : intrmask:=1;
TI[2] : initdone:=1

thread_first_irqhandler
locals: int temp;
TF[1] : assume(intrmask = 1);
TF[2] : assert(initdone = 1);
TF[3] : temp1:=workqueueitems;
TF[4] : workqueueitems:=temp1+ 1;
TF[5] : interrupts:=interrupts+ 1

thread_second_irqhandler
TS[1] : assume(intrmask = 1);
TS[2] : assert(initdone = 1);
TS[3] : temp2:=workqueueitems;
TS[4] : workqueueitem:=temp2+ 1;
TS[5] : interrupts:=interrupts+ 1

thread_checkworkqueue
TC[1] : assert(workqueueitems ≥ interrupts);

ϕG: hb(TI[2],TF[2]) ∧ hb(TI[2],TS[2])∧
(hb(TS[4],TF[4]) ∨ hb(TF[4],TS[3]) ∨ ψ1) ∧

(hb(TF[4],TS[4]) ∨ hb(TS[4],TF[3]) ∨ ψ1)∧
(hb(TS[4],TF[4]) ∨ hb(TF[4],TS[3]) ∨ ψ2) ∧

(hb(TF[4],TS[4]) ∨ hb(TS[4],TF[3]) ∨ ψ2)

(b) Interrupt handler (simplified snippet of the Linux
RealTek 8169 network driver). Once the intrmask
variable is set by the interruptmaskset thread, the
hardware starts producing interrupts. The handling of
these interrupts, by the two irqhandler threads, is cor-
rect only if the driver initialisation is complete (captured
by the initdone variable). The irqhandlers add
items to a workqueue; the addition of items is modelled
using a counter workqueueitems. The variable
interrupts counts the total number of interrupts
handled by the irqhandler threads and the thread
checkworkqueue uses interrupts to check for
inconsistencies in the workqueue.
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Figure 5.4 Example programs

init: registered:=0

pci_thread
TP[1] : registered:=1;
TP[2] : hw_start:=&drv_hw_start;

network_thread
TN[1] : assume(registered 6= 0);
TN[2] : assert(∗hw_start = drv_hw_start)

/* pointer dereference */

void drv_hw_start() {
/* does something */
}

ϕB : hb(TN[2],TP[2])

(c) Network device initialiser. This trace is drawn
from a simplified snippet of the Linux RealTek 8169
network driver. The pci thread signals that a network
device is registered using the variable registered
and sets hw_start to point to the drv_hw_start
method. The network thread calls drv_open once
the network device is registered. The drv_open
method dereferences the hw_start pointer.

globals: int[] pagetable, memory;
init: pagetable[1] = 5, memory[5] =
10;

thread_pagetableaccess:
locals: int loc, data, page;
TP[1]: page := 1;
TP[2]: loc := pagetable[page];
TP[3]: data := memory[loc];
TP[4]: assert (data = 10);

thread_datamove:
locals: int page, newloc, loc;
TD[1]: page, newloc := 1, 20;
TD[2]: loc := pagetable[page];
TD[3]: pagetable[page] := newloc;
TD[4]: memory[newloc] :=
memory[loc];

ϕB : hb(TD[3],TP[2]) ∧ hb(TP[3],TD[4])

(d) Page-table. The pagetableaccess thread reads
a memory location loc from pagetable and reads
data from that memory location. The datamove
thread reads the current memory location loc from
pagetable, updates pagetable with a new memory
location newloc and copies the data from the old
memory location to the new memory location.

5.4 Bug Summarisation

Next we show that the representation for a sound overapproximation of the bad neighbourhood

of a trace π (returned as ϕB by Algorithm 5.2) is useful for counterexample summarisation and

bug summarisation. The HB-formula ϕB encapsulates relevant ordering information about all

counterexamples in the neighbourhood of π and can be viewed as a stand-alone counterexample

summary. For instance, in Figure 5.4(c), one may view ϕB = hb(TN[2],TP[2]) as a counter-

example summary that indicates a possible order violation. While such a bug report can already

be useful to a human debugger, a cursory examination of the data-flow through the events in ϕB

can enable formulation of a more precise bug summary. To this end, we present a set of rules to

help infer specific bugs such as data races, define-use order violations and two-stage access bugs.

5.4.1 Inferring Bug Summaries from ϕB

We assume ϕB is in DNF. Our inference rules are presented in Figure 5.5. For a thread T, a

location `, and a global program variable v, (a) read(T[`], v) denotes that event T[`] reads from

v, (b) write(T[`], v) denotes that event T[`] writes to v, and (c) access(T[`], v) denotes that
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Figure 5.5 Inference rules for bug summarisation (In this figure, `1 < `′1 < `′′1 and `2 < `′2 < `′′2 .)
hb(T1[`

′
1],T2[`2]) ∧ hb(T2[`2],T1[`

′′
1 ]) ∧ ψ

read(T1[`
′
1], v) write(T1[`

′′
1 ], v) access(T2[`2], v)

DataRace({T1[`
′
1],T1[`

′′
1 ]},T2[`2])

DATARACE.1

hb(T1[`
′
1],T2[`

′′
2 ]) ∧ hb(T2[`

′
2],T1[`

′′
1 ]) ∧ ψ

read(T1[`
′
1], v) write(T1[`

′′
1 ], v) read(T2[`

′
2], v) write(T2[`

′′
2 ], v)

DataRace({T1[`
′
1],T1[`

′′
1 ]}, {T2[`

′
2],T2[`

′′
2 ]})

DATARACE.2

hb(T1[`1],T2[`2]) ∧ hb(T2[`2],T1[`
′
1]) ∧ ψ

access(T1[`1], v) access(T2[`2], v) access(T1[`
′
1], v)

AtomicityViolation(T1[`1 : `
′
1],T2[`2])

ATOMICITYVIOLATION.1

hb(T1[`1],T2[`
′
2]) ∧ hb(T2[`2],T1[`

′
1]) ∧ ψ

access(T1[`1], v) access(T2[`2], v) access(T1[`
′
1], v) access(T2[`

′
2], v)

AtomicityViolation(T1[`1 : `
′
1],T2[`2 : `

′
2])

ATOMICITYVIOLATION.2

hb(T1[`1],T2[`2]) ∧ hb(T2[`
′
2],T1[`

′
1]) ∧ ψ

write(T1[`1], v) write(T1[`
′
1], w) read(T2[`2], v) read(T2[`

′
2], w)

TwoStageAccessBug(T1[`1 : `
′
1],T2[`2 : `

′
2])

TWOSTAGEACCESSBUG.1

hb(T1[`1],T2[`2]) ∧ hb(T2[`
′
2],T1[`

′
1]) ∧ ψ

read(T1[`1], v) read(T1[`
′
1], w) write(T2[`2], v) write(T2[`

′
2], w)

TwoStageAccessBug(T1[`1 : `
′
1],T2[`2 : `

′
2])

TWOSTAGEACCESSBUG.2

hb(T1[`1],T2[`2]) ∧ ψ read(T1[`1], v) write(T2[`2], v)
∃σ ∈ Nπ : σ |= hb(T1[`1],T2[`2]) ∧ ψ ∧

∧
T[`] write(T[`], v) ∧ T[`] 6= T1[`1]⇒ hb(T1[`1],T[`])

DefineUse(T1[`1],T2[`2])
DEFINEUSE

event T[`] reads from or writes to v. In the discussion below, we combine these with ordering

constraints in a natural manner. For example, read(T1[`1], v)→ write(T2[`2], v) says that event

T1[`1] happens before T2[`2] and that read(T1[`1], v) and write(T2[`2], v) hold.

Data races. Take two events `′1; `′′1, where event `′1 has statement r:=v + 1, event `′′1 has

statement v:=r, and r is a local variable modelling a register. In this case, a data race between

events `′1; `′′1 and some other event `2 writing to v in another thread manifests itself in a trace

σ as the ordering pattern `′1 <σ `2 <σ `′′1. Hence, the DATARACE.1 rule infers a possible

data race between events labelled T1[l
′
1],T1[l

′′
1], and T2[l2] if the pattern read(T1[l

′
1], v) →

access(T2[l2], v)→ write(T1[l
′′
1], v) is found in ϕB.

Further, if instead of `2 we have events `′2; `′′2, where `′2 reads from v and `′′2 writes to v, a data

race can manifest in a trace σ as `′1 <σ `
′′
2∧`′2 <σ `

′′
1. The DATARACE.2 rule infers a possible data

race between T1[`
′
1],T1[`

′′
1] and T2[`

′
2],T2[`

′′
2], if the patterns read(T1[`

′
1], v)→ write(T2[`

′′
2], v)

and read(T2[`
′
2], v)→ write(T1[`

′′
1], v) is found in the same disjunct of ϕB.
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Atomicity violations. The ATOMICITYVIOLATION rules generalise the DATARACE rules. If

the data-flow and ordering pattern access(T1[`1], v) → access(T2[`2], v) → access(T1[`
′
1], v)

manifests inϕB , the first rule infers a possible atomicity violation of the event sequence T1[`1 : `′1]

via event T2[`2]. If the patterns access(T1[`1], v)→ access(T2[`
′
2], v) and access(T2[`2], v)→

access(T1[`
′
1], v) manifest in the same disjunct of ϕB , the second rule infers a possible atomicity

violation of the event sequence T1[`1 : `′1] and event sequence T2[`2 : `′2].

Two stage access. The TWOSTAGEACCESSBUG rules capture two classic scenarios of two-

stage access bugs, indicating violations of some consistency requirement of accesses to v and

w. In particular, the values of v and w read by a thread could be inconsistent if either of the fol-

lowing patterns manifest in ϕB: (a) write(T1[`1], v)→ read(T2[`2], v)→ read(T2[`
′
2], w)→

write(T1[`
′
1], w); or (b) read(T1[`1], v)→write(T2[`2], v)→ write(T2[`

′
2], w)→ read(T1[`

′
1], w).

Define-use ordering. The DEFINEUSE rule infers a specific type of order violation indicating

the use of a variable before it is defined. Given ϕB in DNF, if the ordering read(T1[`1], v)→

write(T2[`2], v) manifests in a disjunct δ, the rule infers a define-use order violation if there

exists a trace σ ∈ Nπ such that σ satisfies δ and T1[`1] precedes all events that write to v in σ.

Starting from ϕB given in DNF, we repeatedly apply the inference rules from Figure 5.5 until

no more rules are applicable. We report all inferred bugs as possible violations. Note that our

goal here is only to assist the user in program debugging. Our inference rules are not complete.

We do not claim that our inferred bugs will manifest in the program’s executions, or that they

will match a human debugger’s intuition. We now present examples illustrating the application

of some of our bug inference rules.

Example 5.4.1. For the example trace shown in Figure 5.1, ϕB is given by hb(TW[1],TD[2]) ∧

hb(TD[1],TW[2]). Since read(TW[1], balance), write(TW[2], balance), read(TD[1], balance) and

write(TD[2], balance) hold, we can apply the DATARACE.2 rule to infer a DataRace(W[1 : 2], Y[1 : 2]).

Note that this bug inference matches the synchronisation lock(TW[1 : 2],TD[1 : 2]) synthesised in

Example 5.3.2.

Example 5.4.2. Consider the example trace shown in Figure 5.4(c). In our encoding, the

pointer hw_start is modelled as an integer variable hw that is initially 0 (since hw_start is

uninitialised). The pointer dereference in TN[2] is modelled as assert(hw > 0). For this example,

ϕB is given by hb(TN[2],TP[2]). Since read(TN[2], hw) and write(TP[2], hw) hold, and trace
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TP[1],TN[1],TN[2],TP[2] satisfies the last premise of the DEFINEUSE rule, we can apply the rule

to infer a define-use order violation between TN[2] and TP[2].

Example 5.4.3. For the example trace shown in Figure 5.4(d), ϕB is given by hb(TD[3],TP[2])∧

hb(TP[3],TD[4]). Sincewrite(TD[3], pagetable),write(TD[4],memory), read(TP[2], pagetable)

and read(TP[3],memory) hold, we can apply the TWOSTAGEACCESSBUG.1 rule to infer

TwoStageAccessBug(TD[3 : 4],TP[2 : 3]).

5.5 Accelerating CEGAR

Finally, we present a procedure for learning predicates for refinement in a CEGAR loop [Clarke

et al., 2000], with the help of TARA. An abstraction-refinement loop proceeds by building an

abstract model of an input program and applying a model-checker on the abstract model. If the

abstract model satisfies the correctness specification, then the input program is correct. Otherwise,

the model-checker finds an abstract counterexample, i.e., an execution in the abstract model. The

abstraction counterexample is spurious if there is no concrete execution that corresponds to the

abstract counterexample. Given a spurious counterexample, the refinement procedure refines

the abstract model. This is done by finding predicates that inform the abstraction procedure to

construct the next abstract model by adding the relevant details to the current abstract model

such that the spurious counterexample is absent from next abstract model. The process starts

over with the newly refined abstraction. After a number of iterations, the abstract model may

have no more counterexamples, which proves the correctness of the input program. For simpler

presentation, we assume that the input program is correct and all the abstract counterexamples

are spurious.

An abstraction-refinement loop often takes many iterations to find the right set of predicates

to prove correctness of the input program. This usually depends on the design of the refinement

procedure. Many heuristics have been proposed to find the relevant predicates in fewer iterations

(see, for example, [Beyer et al., 2007]). We aim to use TARA to accelerate the search for the

right predicates, i.e., reduce the number of iterations of a CEGAR loop.

Our refinement procedure takes a concurrent abstract counterexample as input and returns

refinement predicates. First, we analyse the counterexample using TARA and obtain an HB-

formula ϕB that encodes a set of incorrect interleavings. We sample a number of interleavings

from ϕB and attempt to compute refinement predicates that simultaneously remove all the
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sampled spurious inter-leavings using a method similar to beautiful interpolants [Albarghouthi

and McMillan, 2013].

5.5.1 Abstraction and Refinement

An abstract model of a concurrent program C = 〈V, {T1, . . . ,Tk}, SV, 〈LV1, . . . , LVk〉〉 is

another concurrent program Ĉ = 〈V, {T̂1, . . . , T̂k}, SV, 〈LV1, . . . , LVk〉〉 such that, for each

i ∈ [1, k] and event ` in Ti, there is an event ˆ̀ in T̂i such that if S0`S1 is feasible then S0
ˆ̀S1 is

feasible.

In predicate abstraction, the abstract event ˆ̀corresponding to an event ` is defined using a

set of predicates as follows. Let us suppose predicates ρ1, . . . , ρm are used for abstraction. Let

i ∈ [1,m]. Let βi be the weakest precondition of ` over ρi, and γi be the weakest precondition of

` over ¬ρi. Let β̂i and γ̂i be the weakest formulæ that are Boolean combinations of ρ1, . . . , ρm,

and imply βi and γi, respectively. S0
ˆ̀S1 is feasible iff ∀i ∈ [1,m] : (S0 |= β̂i → S1 |=

ρi) ∧ (S0 |= γ̂i → S1 |= ¬ρi).

Let S0
ˆ̀
1S1 . . . ˆ̀

nSn be a spurious counterexample, i.e., an execution in the abstract model that

violates the specification. A refinement procedure computes additional predicates α0, α1, . . . , αn−1, αn

over program variables that satisfy the following constraint.

α0 = true ∧ αn = false ∧
n∧
i=1

αi−1 ∧ `i → α′i

Note that the primed formula α′i is the formula αi where each variable v is replaced by its

primed version v′. Recall that v′ represents the value of v after the execution of a statement. An

abstract model computed using predicates α1, . . . , αn−1 is guaranteed to not exhibit the spurious

counterexample [Henzinger et al., 2004].

5.5.2 Sampling an HB-formula

We pass trace ˆ̀
1 . . . ˆ̀

n to TARA and obtain an HB-formula ϕB in DNF to represent bad abstract

traces. ϕB is a formula over events ˆ̀
1 . . . ˆ̀

n. With slight abuse of notation, we assume that ϕB

is a formula over events `1 . . . `n, which can be obtained by replacing abstract events by their

corresponding concrete events in ϕB . We sample a few concrete infeasible traces that satisfy ϕB

and try to compute the simultaneous refinement predicates, i.e., predicates that eliminate all the

sampled traces from the abstract program. Intuitively, learning predicates simultaneously using



87

multiple spurious counterexamples may allow us to find more general predicates. Both sampling

and simultaneous refinement are heuristics choices. Here, we present one possible choice for

the sampling. However, one can imagine a wide array of heuristics for these choices. In our

sampling heuristic, we search for two disjuncts in ϕB of the form

ϕ1 ∧ ea < eb and ϕ2 ∧ eb < ea

such that negation of any HB-formula in ϕ1 is not in ϕ2. We generate traces π1 and π2 such that

(a) they satisfy ϕ1 ∧ ϕ2 ∧ ea < eb and ϕ1 ∧ ϕ2 ∧ eb < ea respectively; and (b) they are of the

following form with e1
k1

= ea and e2
k2

= eb.

π1 = e0
1 . . . e

0
k0︸ ︷︷ ︸

prefix

e1
1 . . . e

1
k1︸ ︷︷ ︸
↘

e2
1 . . . e

2
k2︸ ︷︷ ︸

↙

e3
1 . . . e

3
k3︸ ︷︷ ︸

suffix

π2 =
︷ ︸︸ ︷
e0

1 . . . e
0
k0

︷ ︸︸ ︷
e2

1 . . . e
2
k2

︷ ︸︸ ︷
e1

1 . . . e
1
k1

︷ ︸︸ ︷
e3

1 . . . e
3
k3

If ϕ1 ∧ ϕ2 ∧ ea < eb and ϕ1 ∧ ϕ2 ∧ eb < ea are satisfiable, such traces always exist. Both the

traces have a common prefix and suffix, and two middle segments e1
1 . . . e

1
k1

and e2
1 . . . e

2
k2

are

swapped. From the traces, we obtain refinement predicates α1 . . . αk0 , β1 . . . βk1+k2 , γ1 . . . γk1+k2 ,

and δ1 . . . δk3 by solving the following constraints.

α0 = true ∧
k0∧
i=1

(αi−1 ∧ `0
i → α′i) ∧ αk0 = β0 = γ0 (prefix)

k1∧
i=1

(βi−1 ∧ `1
i → β′i) ∧

k1+k2∧
i=k1+1

(βi−1 ∧ `2
i−k1 → β′i) (mid trace 1)

k2∧
i=1

(γi−1 ∧ `2
i → γ′i) ∧

k2+k1∧
i=k2+1

(γi−1 ∧ `1
i−k2 → γ′i) (mid trace 2)

δ0 = βk1+k2 = γk1+k2 ∧
k3∧
i=1

(δi−1 ∧ `3
i → δ′i) ∧ δk3 = false (suffix)

In the above equations, the first and last constraints correspond to the prefix and suffix respectively.

The second and third constraints correspond to the middle segments of the two traces.

5.5.3 Constraint Solving for Simultaneous Refinement

We discuss how to solve the above constraints for refinement. The above constraints are a set

of non-recursive Horn clauses. Many techniques exist to solve such constraints (e.g. [Gupta

et al., 2011a; Bjørner et al., 2013]). Since we are aiming for simultaneous refinement, we

prefer the solutions for the unknown predicates to be simple atomic formulæ. If an unknown

predicate appears as consequent of multiple implications (for example, αk0+1), then the solver

may naturally give a solution that is a disjunction of two atomic formulæ. We use the method
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that is presented in Section 4 of [Albarghouthi and McMillan, 2013] for the theory of linear

arithmetic that forces a solver to return solutions for the above constraints with single atomic

formulæ if such a solution exists.

5.6 Implementation and Experiments

We have implemented Algorithms 5.1 and 5.2 in a tool TARA1. TARA consists of 4000 lines of

C++ code and uses Z3 [de Moura and Bjørner, 2008] to discharge SMT queries. We use a new

input format, CTRC, for specifying traces. The CTRC format consists of global and thread-local

variables along with types and any initial valuations, and the statements (in SMT-LIB format) in

each thread. This makes TARA independent and easy to use with any front-end that can translate

statements to the SMT-LIB syntax. We use a modified version of CONREPAIR (Chapter 4) to

generate CTRC files for bad traces. CONREPAIR, in turn, uses CBMC [Clarke et al., 2004]

to find bad traces in programs and CPACHECKER [Beyer and Keremoglu, 2011] to translate C

statements into the SMT-LIB format.

TARA has a number of different output options. Algorithm 5.1 generates an HB-formula

in DNF, which is often large. Algorithm 5.2 generates a succinct HB-formula in DNF, the

sizes of whose disjuncts are locally minimised. In our experience, the unsat core provided

by Z3 is often far from minimal. Hence, we first use Z3 to compute an unsat core and then

use a custom minimisation technique—we use Z3 incrementally with triggers to activate and

deactivate expressions for unsat core minimisation. TARA can also generate an HB-formula in

CNF representing bad neighbourhoods. However, this is computationally more expensive.

Experiments. Our benchmarks are from a diverse set of sources, namely, the concurrency

track of the 2014 software verification competition SV-COMP [Beyer, 2014] (suite sv) and the

regression-test suites of CONREPAIR (Chapter 4) (suite cr) and ESBMC [Morse et al., 2014]

(suite es). We also use a set of small handmade examples with common bug patterns (suite hm).

The cr suite contains simplified versions of real buggy code from the Linux kernel. To test the

limits of TARA, we use the loop-x examples that have two threads each executing a loop of

x iterations. For correct behaviour, each iteration should execute atomically with respect to

iterations of the other thread. However, the locks required to ensure this are missing.

1available as open-source software along with benchmarks: https://github.com/thorstent/TARA

https://github.com/thorstent/TARA
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All measurements were done on an Intel core i5-3320M laptop with 8GB of RAM. Our

results are presented in Table 5.1. The time reported only includes the time taken by TARA, and

not the time needed to find a bad trace in the benchmark program. The #Threads/#Instrs column

in Table 5.1 indicates the complexity of the benchmarks in terms of the number of threads

and statements. The performance of SMT queries involving ΦCTP is mostly influenced by the

number and size of π-functions. The #π-functions/#Disjuncts column indicates the number of

π-functions and average number of arguments per π-function.

The performance of TARA using Algorithm 5.1 and Algorithm 5.2 are in columns marked

Algo.1 and Algo.2, respectively. For each algorithm, we report the number of iterations, the total

time taken and the size of the generated ϕB (as the number of disjuncts and the average number

of terms in each disjunct). Algorithm 5.1 times out after 10 minutes in many cases—in such

cases, we report the number of loop iterations completed before the timeout. With Algorithm 5.2,

TARA terminates within 5 seconds for each benchmark. This time is negligible compared to the

time taken to find the initial counterexample trace. For example, CBMC took 2 minutes to find

the trace usb-serial-1, while our analysis completed exploration of its bad neighbourhood

in 2 seconds. We tested the limits of our tool in the loop-x examples. With 32 iterations per

thread, we exceeded the timeout and hit the limit of our current implementation.
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Table 5.1 Experiments: ϕB generation
Iterations Total time Size of ϕB

Name Suite #Threads/#Instrs #π-functions/#Disjuncts Algo.1 Algo.2 Algo.1 Algo.2 Algo.1 Algo.2
reorder_2 sv 2/3 2/2.0 1 1 18ms 28ms 1/2.0 1/2.0
define_use cr 2/4 2/2.0 1 1 15ms 22ms 1/2.0 1/1.0
em28xx cr 2/8 4/2.0 1 1 16ms 25ms 1/2.0 1/1.0
locks es 3/8 10/1.6 12 2 27ms 37ms 12/5.5 2/4.0
2stage hm 2/8 5/1.4 8 1 26ms 32ms 8/3.8 1/2.0
drbd_receiver cr 2/9 5/1.6 40 1 42ms 28ms 40/3.9 1/1.0
md cr 3/11 4/1.8 40 1 76ms 33ms 40/6.1 1/1.0
lazy01 sv 3/12 6/3.7 2 2 31ms 57ms 2/3.0 2/2.0
locks_hb hm 4/13 10/2.2 >29.0k 7 TO 119ms TO 6/3.0
lc_rc cr 4/14 8/2.0 4.6k 1 21.4s 37ms 4.6k/16.7 1/1.0
barrier_locks hm 3/18 17/2.6 10.6k 6 1.4min 521ms 10.6k/10.0 4/1.5
stateful01 sv 3/19 10/3.4 2.3k 2 10.5s 84ms 2.3k/9.4 2/1.0
read_write_lock sv 4/22 16/3.4 9.2k 4 1.6min 319ms 9.2k/16.1 4/3.0
loop hm 2/38 14/2.7 2 1 38ms 72ms 2/3.0 1/2.0
fib_bench sv 3/39 24/3.6 >20.5k 2 TO 2.3s TO 2/10.0
i2c_hid cr 2/42 26/4.5 >23.4k 3 TO 615ms TO 3/1.3
rtl8169-1 cr 7/71 22/2.7 >20.4k 1 TO 111ms TO 1/2.0
rtl8169-2 cr 7/116 41/2.3 >7.3k 1 TO 463ms TO 1/1.0
rtl8169-5 cr 7/134 48/3.1 >5.5k 1 TO 1.5s TO 1/1.0
rtl8169-4 cr 7/142 48/3.0 >8.4k 9 TO 3.8s TO 2/1.0
rtl8169-6 cr 7/144 52/2.9 >8.1k 1 TO 887ms TO 1/1.0
usb_serial-1 cr 7/151 87/3.7 >5.5k 1 TO 1.9s TO 1/1.0
usb_serial-2 cr 7/163 93/3.6 >4.4k 3 TO 4.4s TO 1/1.0
rtl8169-3 cr 8/174 61/3.6 >4.2k 2 TO 2.7s TO 1/1.0
usb_serial-3 cr 7/178 100/3.7 >4.3k 1 TO 2.1s TO 1/1.0
loop-2 N/A 2/16 8/3.0 >4.0k 4 11.6s 135ms 4.0k/8.9 4/2.0
loop-8 N/A 2/64 32/9.0 >15.3k 16 TO 3s TO 16/2.0
loop-32 N/A 2/256 128/33.0 >674 64 TO 35.5min TO 64/2.0
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5.6.1 Synchronisation Synthesis

We implemented the synthesis algorithm as an extension to TARA. Given a trace π, TARA

supports synchronisation synthesis as an optional step after generating succinct representations

ofN g
π andN b

π . The implementation first attempts to apply the rules ADD.BARRIER, ADD.LOCK

and ADD.WAITSIGNAL (in that order). Then, the merging rules are applied, first merging locks

across thread pairs, and then merging barriers and locks spanning multiple threads.

We report the results of synchronisation synthesis experiments in Table 5.2. In each case, we

report the numbers of locks (#L), barriers (#B) and wait-signal (#WS) primitives synthesised.

The synthesised synchronisation matched our (human) intuition about the repairs needed. Since

TARA generates fairly small ϕG formulæ, the synthesis takes less than 50 microseconds in every

case.

Table 5.2 Experiments: synchronisation synthesis
L : Locks WS : Wait-notifies B : Barriers.

Name #L #B #WS Name #L #B #WS
reorder_2 1 0 0 loop 1 0 0
define_use 0 0 1 fib_bench 1 0 0
em28xx 0 0 1 i2c_hid 1 0 2
locks 1 0 0 rtl8169-1 0 0 1
2stage 0 0 1 rtl8169-2 0 0 1
drbd_receiver 0 0 1 rtl8169-5 0 0 1
md 0 0 1 rtl8169-4 0 0 2
lazy01 0 0 2 rtl8169-6 0 0 1
locks_hb 1 0 2 usb_serial-1 0 0 1
lc_rc 0 0 1 usb_serial-2 0 0 1
barrier_locks 1 1 0 rtl8169-3 0 0 1
stateful01 0 0 2 usb_serial-3 0 0 1
read_write_lock 4 0 0

5.6.2 Bug Summarisation

Given a trace π, TARA supports bug summarisation as an optional step after generating ϕB.

Starting from ϕB in DNF, the implementation attempts to apply the DATARACE, ATOMICITYVI-

OLATION, TWOSTAGEACCESSBUG and DEFINEUSE inference rules (in that order). Identical

bug reports are merged to avoid duplicates.

The experimental results of using our TARA-based bug summarisation on our test-suite are

presented in Table 5.3. We report the numbers of data races, atomicity violations, two-stage

access bugs and define-use bugs inferred. The Human column in the table presents a classification

of the bugs present in the benchmarks, as reported by an expert user. The last column indicates if
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TARA’s bug summary matched the human classification. For the majority of benchmarks, TARA

summarised the bug correctly (Yes). In some cases, TARA did not infer a bug summary (–). For

the usb_serial-1 benchmark, TARA’s bug summary contradicted the human classification. For

each example, the implementation takes at most 12 milliseconds.

Table 5.3 Experiments: bug summarisation
2S : 2-stage access bug DR : Data-race bug OAV : Other atomicity violation
DU : Define-use bugs OV : Order-violation bug (only human inspection)
Human : Human interpretation of the bug
Name #2S #DR #AV #DU Human Bug summary right?
reorder_2 0 0 0 1 DU Yes
define_use 0 0 0 1 DU Yes
em28xx 0 0 0 1 DU Yes
locks 0 2 0 0 DR Yes
2stage 1 0 0 0 2S Yes
drbd_receiver 0 0 0 0 OV –
md 0 0 0 1 DU Yes
lazy01 0 0 0 0 OV –
locks_hb 0 2 0 2 DR, DU Yes
lc_rc 0 0 0 0 OV –
barrier_locks 0 2 0 0 DR, OV Yes
stateful01 0 0 0 0 OV –
read_write_lock 0 0 4 0 AV Yes
hm-loop 0 1 0 0 DR Yes
fib_bench 0 0 2 0 AV Yes
i2c_hid 0 0 1 0 AV, OV Yes
rtl8169-1 0 0 0 1 DU Yes
rtl8169-2 0 0 0 1 DU Yes
rtl8169-5 0 0 0 0 OV –
rtl8169-4 0 0 0 0 OV –
rtl8169-6 0 0 0 0 OV –
usb_serial-1 0 0 0 1 OV No
usb_serial-2 0 0 0 0 OV –
rtl8169-3 0 0 0 0 OV –
usb_serial-3 0 0 0 0 OV –

5.6.3 Accelerating CEGAR

We have implemented the abstraction refinement procedure in SATABS [Donaldson et al., 2011]

and refer to the modified version as SATABS[TARA]. In Table 5.4 we present the result of running

SATABS and SATABS[TARA] on three hand crafted examples. Each of these examples contain

two threads and 15-20 lines of code. Our method reduces the number of iterations in all the
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Table 5.4 Experiments: CEGAR acceleration
Example SATABS SATABS[TARA]

Iterations Time(s) Iterations Time(s)
example1 55 35.4 45 33.5
example2 65 45.7 60 47.9
example3 45 23.0 41 23.9

examples. However, the total time of verification increases for two examples due to the fact that

our refinement procedure is not well optimised.
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Chapter 6

Synthesis using an Implicit Specification

6.1 Problem Statement and Illustrative Example

In the past three chapters we introduced synthesis techniques for programs using an explicit

specification, such as assertions. Explicit specifications suffer from the drawback that it is

difficult to ensure that the specification is complete and fully captures the programmer’s intent.

We propose a solution where the specification is implicit. We observe that a core difficulty in

concurrent programming originates from the fact that the scheduler can preempt the execution

of a thread at any time. We therefore give the developer the option to program assuming a

friendly, non-preemptive, scheduler. Our tool automatically synthesises synchronisation code

to ensure that every behaviour of the program under preemptive scheduling is included in the

set of behaviours produced under non-preemptive scheduling. Thus, we use the non-preemptive

semantics as an implicit correctness specification.

The non-preemptive scheduling model (also known as cooperative scheduling [Yi and

Flanagan, 2010]) can simplify the development of concurrent software, including operating

system (OS) kernels, network servers, database systems, etc. [Sadowski and Yi, 2010; Ryzhyk

et al., 2009]. In the non-preemptive model, a thread can only be descheduled by voluntarily

yielding control, e.g., by invoking a blocking operation. Synchronisation primitives may be

used for communication between threads, e.g., a producer thread may use a semaphore to notify

the consumer about availability of data. However, one does not need to worry about protecting

accesses to shared state: a series of memory accesses executes atomically as long as the scheduled

thread does not yield.
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A user evaluation by Sadowski and Yi [Sadowski and Yi, 2010] demonstrated that this model

makes it easier for programmers to reason about and identify defects in concurrent code. There

exist alternative implicit correctness specifications for concurrent programs. For example, for

functional programs one can specify the final output of the sequential execution as the correct

output. The synthesiser must then generate a concurrent program that is guaranteed to produce

the same output as the sequential version [Bloem et al., 2014]. This approach does not allow any

form of thread coordination, e.g., threads cannot be arranged in a producer-consumer fashion. In

addition, it is not applicable to reactive systems, such as device drivers, where threads are not

required to terminate.

Another implicit specification technique is based on placing atomic sections in the source

code of the program [Flanagan and Qadeer, 2003]. In the synthesised program the computation

performed by an atomic section must appear atomic with respect to the rest of the program. Spe-

cifications based on atomic sections and specifications based on the non-preemptive scheduling

model, used by our tool, can be easily expressed in terms of each other. For example, one can

simulate atomic sections by placing yield statements before and after each atomic section, as

well as around every statement that does not belong to any atomic section.

We believe that, at least for systems code, specifications based on the non-preemptive

scheduling model are easier to write and are less error-prone than atomic sections. Atomic

sections are subject to syntactic constraints. Each section is marked by a pair of matching

opening and closing statements, which in practice means that the section must start and end

within the same program block. In contrast, a yield can be placed anywhere in the program.

Moreover, atomic sections restrict the use of thread synchronisation primitives such as

semaphores. An atomic section either executes in its entirety or not at all. In the former case,

all wait conditions along the execution path through the atomic section must be simultaneously

satisfied before the atomic section starts executing. In practice, to avoid deadlocks, one can only

place a blocking statement at the start of an atomic section. Combined with syntactic constraints

discussed above, this restricts the use of thread coordination with atomic sections—a severe

limitation for systems code where thread coordination is common. In contrast, synchronisation

primitives can be used freely under non-preemptive scheduling. Internally, they are modelled

using yields: for instance, a semaphore acquisition statement is modelled by a yield followed by

an assume statement that proceeds when the semaphore becomes available.

Lastly, our specification defaults to the safe choice of assuming everything needs to be atomic
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unless a yield statement is placed by the programmer. In contrast, code that uses atomic sections

can be preempted at any point unless protected by an explicit atomic section.

In defining behavioural equivalence between preemptive and non-preemptive executions, we

focus on externally observable program behaviours: two program executions are observationally

equivalent if they generate the same sequences of calls to interfaces of interest. This approach fa-

cilitates modular synthesis where a module’s behaviour is characterised in terms of its interaction

with other modules. Given a multi-threaded program C and a synthesised program C ′ obtained

by adding synchronisation to C, C ′ is preemption-safe w.r.t. C if for each execution of C ′ under a

preemptive scheduler, there is an observationally equivalent non-preemptive execution of C. Our

synthesis goal is to automatically generate a preemption-safe version of the input program.

We rely on abstraction to achieve efficient synthesis of multi-threaded programs. We propose

a simple, data-oblivious abstraction inspired by an analysis of synchronisation patterns in OS

code, which tend to be independent of data values. The abstraction tracks types of accesses

(read or write) to each memory location while ignoring their values. In addition, the abstraction

tracks branching choices. Calls to an external interface are modelled as writes to a special

memory location, with independent interfaces modelled as separate locations. To the best of

our knowledge, our proposed abstraction is yet to be explored in the verification and synthesis

literature. The abstract program is denoted as Cabs.

Two abstract program executions are observationally equivalent if they are equal modulo the

classical independence relation I on memory accesses. This means that every sequence ω of

observable actions is equivalent to a set of sequences of observable actions that are derived from

ω by repeatedly commuting independent actions. Independent actions are accesses to different

locations, and accesses to the same location iff they are both read accesses. Using this notion of

equivalence, the notion of preemption-safety is extended to abstract programs.

Our abstraction is reminiscent of previously used abstractions that track reads and writes to

individual locations (e.g., [Vechev et al., 2010b; Alglave et al., 2014]). However, our abstraction

is novel as it additionally tracks some control-flow information (specifically, the branches taken)

giving us higher precision with almost negligible computational cost.

Under abstraction, we model each thread as a nondeterministic finite automaton (NFA) over a

finite alphabet, with each symbol corresponding to a read or a write to a particular variable. This

enables us to construct NFAs NPabs, representing the abstraction of the original program C under

non-preemptive scheduling, and Pabs, representing the abstraction of the synthesised program
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C ′ under preemptive scheduling. We show that preemption-safety of C ′ w.r.t. C is implied by

preemption-safety of the abstract synthesised program C ′abs w.r.t. the abstract original program

Cabs, which, in turn, is implied by language inclusion modulo I of NFAs Pabs and NPabs. While

the problem of language inclusion modulo an independence relation is undecidable [Bertoni et al.,

1982], we show that the antichain-based algorithm for standard language inclusion [de Wulf

et al., 2006] can be adapted to decide a bounded version of language inclusion modulo an

independence relation.

Our synthesis works in a counterexample-guided inductive synthesis (CEGIS) loop that

accumulates a set of global constraints. The loop starts with a counterexample obtained from

the language inclusion check. A counterexample is a sequence of locations in Cabs, which

when executed in order produce an observation sequence that is valid under the preemptive

semantics, but not under the non-preemptive semantics. From the counterexample we infer

mutual exclusion (mutex) constraints, which when enforced in the language inclusion check

avoid returning the same counterexample again. We accumulate the mutex constraints from

all counterexamples iteratively generated by the language inclusion check. Once the language

inclusion check succeeds, we construct a set of global constraints using the accumulated mutex

constraints and constraints for enforcing deadlock-freedom. This approach is the key difference

to our paper [Černý et al., 2015b], where a greedy approach is employed that immediately places

a lock to eliminate a bug. The greedy approach may result in a suboptimal lock placement with

unnecessarily overlapping or nested locks.

The global approach allows us to use an objective function f to find an optimal lock placement

w.r.t. f once all mutex constraints have been identified. Examples of objective functions include

minimising the number of lock statements (leading to coarse-grained locking) and maximising

concurrency (leading to fine-grained locking). We encode such an objective function, together

with the global constraints, into a weighted maximum satisfiability (MaxSAT) problem, which is

then solved using an off-the-shelf solver.

Since the synthesised lock placement is guaranteed not to introduce deadlocks our solution

follows good programming practices with respect to locks: no double locking, no double

unlocking and no locks locked at the end of the execution.

We implemented our synthesis algorithm in a new prototype tool called LISS (Language

Inclusion-based Synchronisation Synthesis) and evaluated it on a series of device driver bench-

marks, including an Ethernet driver for Linux and the synchronisation skeleton of a USB-to-serial
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Figure 6.1 Running example
procedure OPEN_DEV

`1: if (open == 0) then
`2: POWER_UP

end if
`3: open := open + 1
`4: yield

end procedure

procedure CLOSE_DEV

`5: if (open > 0) then
`6: open := open− 1
`7: if (open == 0) then
`8: POWER_DOWN

end if
end if

`9: yield
end procedure

Figure 6.2 Interaction of the device driver with the OS and the device

OS Thread 1

OS Thread 2

Driver
open_dev

close_dev

Device
power_on

power_off

controller driver, as well as an in-memory key-value store server. First, LISS was able to detect

and eliminate all but two known race conditions in our examples; these included one race

condition that we previously missed when synthesising from explicit specifications (Chapter 4),

due to a missing assertion. Second, our abstraction proved highly efficient: LISS runs an order of

magnitude faster on the more complicated examples than our previous synthesis tool based on

the CBMC model checker. Third, our coarse abstraction proved surprisingly precise in practice:

across all our benchmarks, we only encountered three program locations where manual abstrac-

tion refinement was needed to avoid the generation of unnecessary synchronisation. Fourth, our

tool finds a deadlock-free lock placement for both a fine-grained and a coarse-grained objective

function. Overall, our evaluation strongly supports the use of the implicit specification approach

based on non-preemptive scheduling semantics as well as the use of the data-oblivious abstraction

to achieve practical synthesis for real-world systems code. With the two objective functions we

implemented, LISS produces an optimal lock placements w.r.t. the objective.

6.1.1 Illustrative Example

Figure 6.1 contains our running example, a part of a device driver. A driver interfaces the

operating system with the hardware device (as illustrated in Figure 6.2) and may be used by

different threads of the operating system in parallel. An operating system thread wishing to

use the device must first call the OPEN_DEV procedure and finally the CLOSE_DEV procedure

to indicate it no longer needs the device. The driver keeps track of the number of threads that
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Figure 6.3 Abstraction of the running example
procedure OPEN_DEV_ABS

`1a: read(open)
`1b: if (∗) then
`2: write(dev)

end if
`3a: read(open)
`3b: write(open)
`4: yield

end procedure

procedure CLOSE_DEV_ABS

`5a: read(open)
`5b: if (∗) then
`6a: read(open)
`6b: write(open)
`7a: read(open)
`7b: if (∗) then
`8: write(dev)

end if
end if

`9: yield
end procedure

interact with the device. The first thread to call OPEN_DEV will cause the driver to power up the

device (line `2), the last thread to call CLOSE_DEV will cause the driver to power down the device

(line `8). The interaction between the driver and the device are represented as procedure calls

in lines `2 and `8. From the device’s perspective, the power-on and power-off signals alternate.

In general, we must assume that it is not safe to send the power-on signal twice in a row to the

device. If executed with the non-preemptive scheduler the code in Figure 6.1 will produce a

sequence of a power-on signal followed by a power-off signal followed by a power-on signal and

so on.

Consider the case where the procedure OPEN_DEV is called in parallel by two operating

system threads that want to initiate usage of the device. Without additional synchronisation, there

could be two calls to POWER_UP in a row when executing under a preemptive scheduler. Consider

two threads (T1 and T2) running the OPEN_DEV procedure. The corresponding trace is T1.`1;

T2.`1; T1.`2; T2.`2; T2.`3; T2.`4; T1.`3; T1.`4. This sequence is not observationally equivalent

to any sequence that can be produced when executing with a non-preemptive scheduler.

Figure 6.3 contains the abstracted versions of the two procedures, OPEN_DEV_ABS and

CLOSE_DEV_ABS. For instance, the statement open := open + 1 is abstracted to the two

statements labelled `3a and `3b. The calls to the device (POWER_UP and POWER_DOWN) are

abstracted as writes to a hypothetical dev variable. This expresses the fact that interactions

with the device are never independent. The abstraction is coarse, but still captures the problem.

Consider two threads (T1 and T2) running the OPEN_DEV_ABS procedure. The following trace

is possible under a preemptive scheduler, but not under a non-preemptive scheduler: T1.`1a;

T1.`1b; T2.`1a; T2.`1b; T1.`2; T2.`2; T2.`3a; T2.`3b; T2.`4; T1.`3a; T1.`3b; T1.`4. Moreover, the
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Figure 6.4 Running example with the synthesised locks
procedure OPEN_DEV

lock(LkVar)
`1: if (open == 0) then
`2: POWER_UP

end if
`3: open := open + 1

unlock(LkVar)
`4: yield

end procedure

procedure CLOSE_DEV

lock(LkVar)
`5: if (open > 0) then
`6: open := open− 1
`7: if (open == 0) then
`8: POWER_DOWN

end if
end if
unlock(LkVar)

`9: yield
end procedure

trace cannot be transformed by swapping independent events into any trace possible under a

non-preemptive scheduler. This is because statements `3b : write(open) and `1a : read(open) are

not independent. Further, `2 : write(dev) is not independent with itself. Hence, the abstract trace

exhibits the problem of two successive calls to POWER_UP when executing with a preemptive

scheduler. Our synthesis algorithm finds this problem, and stores it as a mutex constraint:

mtx([`1a : `3b], [`2 : `3b]). Intuitively this constraint expresses the fact if one thread is executing

any instruction between `1a and `3b no other thread may execute `2 or `3b.

While this constraint ensures two parallel calls to OPEN_DEV behave correctly, two parallel

calls to CLOSE_DEV may result in the the device receiving two POWER_DOWN signals. This is

represented by the concrete trace T1.`5; T1.`6; T2.`5; T2.`6; T2.`7; T2.`8; T2.`9; T1.`7; T1.`8;

T1.`9. The corresponding abstract trace is T1.`5a; T1.`5b; T1.`6a; T1.`6b; T2.`5a; T2.`5b; T2.`6a;

T2.`6b; T2.`7a; T2.`7b; T2.`8; T2.`9; T1.`7a; T1.`7b; T1.`8; T1.`9. This trace is not possible

under a non-preemptive scheduler and cannot be transformed to a trace possible under a non-

preemptive scheduler. This results in a second mutex constraint mtx([`5a : `8], [`6b : `8]). With

both mutex constraints the program is correct. Our lock placement procedure then encodes these

constraints in SMT and the models of the SMT formula are all the correct lock placements. In

Figure 6.4 we show OPEN_DEV and CLOSE_DEV with the inserted locks.

6.2 Solution Overview

Reduction of preemption-safety to language inclusion. To ensure tractability of checking

preemption-safety, we build the abstract program Cabs from C using the abstraction function

described in Section 6.3. Under abstraction, we model each thread as a nondeterministic finite
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Figure 6.5 Solution Overview

Compute Cabs

Construct NPabsConstruct P′abs

Language
inclusion?

Generalise cex
into HB-formula

Infer mutex
constraints

Construct
new P′abs:

enforce mutex
constraints

Construct
global lock
placement

constraints for
correctness

Compute optimal
lock placement

Synthesise C ′:
Place optimal

locks in C

YesNo
cex

mutex constraints

f
C

C ′

automaton (NFA) over a finite alphabet consisting of abstract observable symbols. This enables

us to construct NFAs NPabs and P′abs accepting the languages [[Cabs]]NP and [[C ′abs]]P , respectively.

We proceed to check if all words of P′abs are included in NPabs modulo an independence relation

I that respects the equivalence of observables. We describe the reduction of preemption-safety

to language inclusion and our language inclusion check algorithm in Section 6.4.

Inference of mutex constraints from generalised counterexamples. If P′abs and NPabs do

not satisfy language inclusion modulo I , then we obtain a counterexample cex. A counterexample

is a sequence of locations which when executed in order produce an observation sequence that is

in [[Cabs]]P , but not in [[C ′abs]]NP . We analyse cex to infer constraints on L(P′abs) for eliminating

cex. We use nhood(cex) to denote the set of all permutations of the symbols in cex that are

accepted by P′abs. Our counterexample analysis examines the set nhood(cex) to obtain an HB-

formula φ — a Boolean combination of happens-before ordering constraints between events

— representing all counterexamples in nhood(cex). Thus cex is generalised into a larger set

of counterexamples represented as φ. From φ, we infer possible mutual exclusion (mutex)

constraints on L(P′abs) that can eliminate all counterexamples satisfying φ. We describe the

procedure for finding constraints from cex in Section 6.5.1.
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Automaton modification for enforcing mutex constraints. Once we have the mutex con-

straints inferred from a generalised counterexample, we enforce them in P′abs, effectively remov-

ing transitions from the automaton that violate the mutex constraint. This completes our loop and

we repeat the language inclusion check of P′abs and NPabs. If another counterexample is found

our loop continues, if the language inclusion check succeeds we proceed to the lock placement.

This differs from the greedy approach employed in [Černý et al., 2015b] that modifies C ′abs,

constructs a new automaton P′abs from C ′abs and then restarts the language inclusion check. The

greedy approach inserts locks into C ′abs that are never removed in a future iteration, which can

lead to inefficient lock placement. For example a larger lock may be placed that completely

surrounds an earlier placed lock.

Computation of an f -optimal lock placement. Once P′abs and NPabs satisfy language inclu-

sion modulo I , we formulate global constraints over lock placements for ensuring correctness.

These global constraints include all mutex constraints inferred over all iterations and constraints

for enforcing deadlock-freedom. Any model of the global constraints corresponds to a lock place-

ment that ensures program correctness. We describe the formulation of these global constraints

in Section 6.6.

Given a cost function f , we compute a lock placement that satisfies the global constraints

and is optimal w.r.t. f . We then synthesise the final output C ′ by inserting the computed lock

placement in C. We present various objective functions and describe the computation of their

respective optimal solutions in Section 6.7.

6.3 Abstract Concurrent Programs

The state of the concrete semantics contains unbounded integer variables, which may result in

an infinite state space. We therefore introduce a simple, data-oblivious abstraction Wabs for

concurrent programs written in W communicating with an external system. The abstraction

tracks types of accesses (read or write) to each memory location while abstracting away their

values. Inputs/outputs to a channel are modelled as writes to a special memory location (dev).

Even inputs are modelled as writes because in our applications we cannot assume that reads from

the external interface are free of side-effects in the component on the other side of the interface.

Havocs become ordinary writes to the variable they are assigned to. Every branch is taken



104

Figure 6.6 Syntax ofWabs

var ::= Variables
ShVar Shared variable
dev Variable for interaction with channels

GrdExpr ::= Expression over guard variables
true/false Boolean constant
GrdVar Guard variable
boolop(GrdExpr 1, . . . ,GrdExprn) Boolean operation

LbStmt ::= Labelled Statement
` : stmt Statement annotated with a location
LbStmt1; LbStmt2 Sequence of statements

stmt ::= Statement
skip marks the end of the thread
read(var) Read a shared variable var
write(var) Write to shared variable var
if (∗) then LbStmt1 else LbStmt2 conditional
while (∗) LbStmt while loop
lock(LkVar) Locks the mutex lock
. . . remaining statements as in Figure 2.1

non-deterministically and tracked. Given C written inW , we denote by Cabs the corresponding

abstract program written inWabs.

Abstract Syntax (Figure 6.6). In the figure, var denotes all shared program variables and

the dev variable. The syntax of all synchronisation primitives and the assumptions over guard

variables remains unchanged. The purpose of the guard variables is to improve the precision of

our otherwise coarse abstraction. Currently, they are inferred manually, but can presumably be

inferred automatically using an iterative abstraction-refinement loop. In our current benchmarks,

guard variables needed to be introduced in only three scenarios.

Abstract semantics. As before, we first define the semantics ofWabs for a single-thread.

Single-thread semantics (Figure 6.7). The abstract state of a single thread tid is given simply by

〈Vo, `〉 where Vo is a valuation of all lock, condition and guard variables and ` is the location of

the statement in tid to be executed next. We define the flow graph and successors for locations in

the abstract program tid in the same way as before. An abstract observable symbol is of the form:

(tid , θ, `), where θ ∈ {(read, sv), (write, sv), then, else, loop, exitloop}. The symbol θ records

the type of access to variables along with the variable name ((read, v), (write, v)) and records

non-deterministic branching choices {if, else, loop, exitloop}. Figure 6.7 presents the rules for
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Figure 6.7 Partial set of rules for single-thread semantics ofWabs

stmt(`) = read(var) `′ = succ(`)

〈Vo, `〉
(tid ,(read,var),`)−−−−−−−−−→ 〈Vo, `′〉

READ

stmt(`) = write(var) `′ = succ(`)

〈Vo, `〉
(tid ,(write,var),`)−−−−−−−−−→ 〈Vo, `′〉

WRITE

stmt(`) = if (∗) then ls1 else ls2 `′ = succ1(`)

〈Vo, `〉
(tid ,then,`)−−−−−−→ 〈Vo, `′〉

IF1

stmt(`) = if (∗) then ls1 else ls2 `′ = succ2(`)

〈Vo, `〉
(tid ,else,`)−−−−−→ 〈Vo, `′〉

IF2

stmt(`) = while (∗) ls `′ = succ1(`)

〈Vo, `〉
(tid ,loop,`)−−−−−−→ 〈Vo, `′〉

WHILE1

stmt(`) = while (∗) ls `′ = succ2(`)

〈Vo, `〉
(tid ,exitloop,`)−−−−−−−−→ 〈Vo, `′〉

WHILE2

Figure 6.8 Example motivating branch-tagging
x := 0; y := 0
Thread T1

`1: x := 0
`2: if (y) then
`3: yield

end if
`4: if (x) then
`5: output(ch, 10)

end if

Thread T2

`6: x := 1

statements unique toWabs; the rules for statements common toWabs andW are the same.

Concurrent semantics. A state of an abstract concurrent program is either 〈terminated〉,

〈invalid〉, or is given by 〈Vo, ctid, (`1, . . . , `n)〉 where Vo is a valuation of all lock, condition

and guard variables, ctid is the current thread identifier and `1, . . . , `n are the locations of the

statements to be executed next in threads T1 to Tn, respectively. There is no 〈failed〉 state

because Wabs does not have assertions. The non-preemptive and preemptive semantics of a

concurrent program written inWabs are defined in the same way as that of a concurrent program

written inW minus the ASSERTION FAILURE rule.
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Figure 6.9 Abstraction function fromW toWabs

⟪LoExp⟫` = (nothing)
⟪ShVar⟫` = ` : read(ShVar)

⟪op(ShVar ,LoExp1, . . . ,LoExpn)⟫` = ` : read(ShVar)
⟪LbStmt1; LbStmt2⟫ = ⟪LbStmt1⟫; ⟪LbStmt2⟫
⟪` : ShVar := LoExp⟫ = ` : write(ShVar)
⟪` : LoVar := ShExp⟫ = ⟪ShExp⟫`
⟪` : ShVar := havoc⟫ = ` : write(ShVar)

⟪` : ShVar := input(ch)⟫ = ` : write(dev); ` : write(ShVar)
⟪` : output(ShVar , ch)⟫ = ` : read(ShVar); ` : write(dev)

⟪` : if (ShExp) then LbStmt1 else LbStmt2⟫ = ⟪ShExp⟫`; ` : if (∗) then ⟪LbStmt1⟫ else ⟪LbStmt2⟫
⟪` : while (ShExp) LbStmt⟫ = ⟪ShExp⟫`; ` : while (∗) ⟪LbStmt⟫; ⟪ShExp⟫`

⟪` : assert(ShExp)⟫ = (nothing)
⟪` : await(ShExp)⟫ = ⟪ShExp⟫`; ` : while (∗) ⟪LbStmt⟫
⟪` : lock(LkVar)⟫ = ` : lock(LkVar)

. . .

6.3.1 Abstraction function (Figure 6.9)

A thread in W can be translated to Wabs using the abstraction function ⟪⟫. The abstraction

replaces all global variable access with read(var) and write(var) and replaces branching condi-

tions with nondeterminism (∗). Since we will use the abstraction only for programs with implicit

specification the assert statements are removed during the translation. All synchronisation

primitives remain unaffected by the abstraction. The abstraction may result in duplicate labels `,

which are replaced by fresh labels. goto statements are rewritten accordingly. For example in

our running example in Figure 6.1 the abstraction of `1 results in two abstract labels `1a and `1b

in Figure 6.3.

6.4 Checking Preemption-safety

6.4.1 Reduction of Preemption-safety to Language Inclusion

Soundness of the abstraction. Formally, two observable behaviours ω1 = α0 . . . αk and

ω2 = β0 . . . βk of an abstract program Cabs in Wabs are equivalent if:

(A1) For each thread tid , the subsequences of α0 . . . αk and β0 . . . βk containing only symbols

of the form (tid , a, `), with a ∈ {(read, var), (write, var), then, else, loop, loopexit} are

equal,
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(A2) For each variable var, the subsequences of α0 . . . αk and β0 . . . βk containing only write

symbols (of the form (tid , (write, var), `)) are equal and

(A3) For each variable var, the multisets of symbols of the form (tid , (read, var), `) between

any two write symbols, as well as before the first write symbol and after the last write

symbol are identical.

Using this notion of equivalence, the notion of preemption-safety is extended to abstract programs:

Given abstract concurrent programs Cabs and C ′abs in Wabs such that C ′abs is obtained by adding

locks to Cabs, C ′abs is preemption-safe w.r.t. Cabs if [[C ′abs]]P babs [[Cabs]]NP .

For the abstraction to be sound we require only that whenever preemption-safety does not

hold for a program C, then there must be a trace in its abstraction Cabs feasible under preemptive,

but not under non-preemptive semantics.

To illustrate this we use the program in Figure 6.8, which is not preemption-safe. To see

this consider the observation (T1, out, 10, ch) that cannot occur in the non-preemptive semantics

because x is always 0 at `4. Note that `3 is unreachable because the variable y is initialised to

0 and never assigned. With the preemptive semantics the output can be observed if thread T2

interrupts thread T1 between lines `1 and `4. An example trace would be `1; `6; `2; `4; `5.

If we consider the abstract semantics, we notice that under the non-preemptive abstract

semantics `3 is reachable because the abstraction makes the branching condition in `2 non-

deterministic. However, since our abstraction is sound there must still be an observation se-

quence that is observable under the abstract preemptive semantics, but not under the abstract

non-preemptive semantics. This observation sequence is (T1, (write, x), `1), (T2, (write, x), `6),

(T1, (read, y), `2), (T1, else, `2), (T1, (read, x), `4), (T1, then, `2), (T1, (write, dev), `5). The branch

tagging records that the else branch is taken in `2. The non-preemptive semantics cannot produce

this observation sequences because it must also take the else branch in `2 and can therefore not

reach the yield statement and context-switch. As a site note, it is also not possible to transform

this observation sequence into an equivalent one under the non-preemptive semantics because of

the write to x at `6 and the accesses to x in `1 and `4.

This example illustrates why branch tagging is crucial to soundness of the abstraction. If

we assume a hypothetical abstract semantics without branch tagging we would get the follow-

ing preemptive observation sequence: (T1, (write, x), `1), (T2, (write, x), `6), (T1, (read, y), `2),

(T1, (read, x), `4), (T1, (write, dev), `5). This sequence would also be a valid observation se-
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quence under the non-preemptive semantics, because it could take the then branch in `2 and

reach the yield statement and context-switch.

Theorem 6.4.1 (soundness). Given concurrent program C and a synthesised program C ′ obtained

by adding locks to C, [[C ′abs]]P babs [[Cabs]]NP =⇒ [[C ′]]P b [[C]]NP .

Proof. It is easier to prove the contrapositive: [[C ′]]P 6b [[C]]NP =⇒ [[C ′abs]]P 6babs [[Cabs]]NP .

[[C ′]]P 6b [[C]]NP means that there is an observation sequence ω′ of [[C ′]]P with no equival-

ent observation sequence in [[C]]NP . We now show that the abstract sequence ω′abs in [[C ′abs]]P

corresponding to the sequence ω′ has no equivalent sequence in [[Cabs]]NP .

Towards contradiction we assume there is such an equivalent sequence ωabs in [[Cabs]]NP . We

show that if ωabs indeed existed it would correspond to a concrete sequence ω that is equivalent

to ω′, thereby contradicting our assumption.

By (A1) ωabs would have the same control flow as ω′abs because of the branch tagging. By

(A2) and (A3) ωabs would have the same data-flow, meaning all reads from global variables

are reading the values written by the same writes as in ω′abs. Since all interactions with the

environment are abstracted to write(dev) the order of interactions must be the same between ωabs

and ω′abs. This means that, assuming all inputs and havocs are returning the same value, in the

execution ω corresponding to ωabs all variables valuation are identical to those in ω′. Therefore,

ω is feasible and its interaction with the environment is identical to ω′ as all variable valuations

are identical. Identical interaction with the environment is how equivalence between ω and ω′ is

defined. This concludes our proof.

Language inclusion modulo an independence relation. We define the problem of language

inclusion modulo an independence relation. Let I be a non-reflexive, symmetric binary relation

over an alphabet Σ. We refer to I as the independence relation and to elements of I as independent

symbol pairs. We define a symmetric binary relation ≈I over words in Σ∗: for all words

σ, σ′ ∈ Σ∗ and (α, β) ∈ I , (σ · αβ · σ′, σ · βα · σ′) ∈≈I . Let ≈tI denote the reflexive transitive

closure of ≈I .1 Given a language L over Σ, the closure of L w.r.t. I , denoted CloI(L), is the set

{σ ∈ Σ∗: ∃σ′ ∈ L with (σ, σ′) ∈ ≈tI}. Thus, CloI(L) consists of all words that can be obtained

from some word in L by repeatedly commuting adjacent independent symbol pairs from I .

1The equivalence classes of ≈tI are Mazurkiewicz traces.
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Definition 6.4.2 (Language inclusion modulo an independence relation). Given NFAs A,B over

a common alphabet Σ and an independence relation I over Σ, the language inclusion problem

modulo I is: L(A) ⊆ CloI(L(B))?

Data independence relation. We define the data independence relation ID over our observable

symbols. Two symbols α = (tidα, aα, `α) and β = (tidβ, aβ, `β) are independent, (α, β) ∈ ID,

iff (I0) tidα 6= tidβ and one of the following hold:

(I1) aα or aβ in {then, else, loop, loopexit}

(I2) aα and aβ are both (read, var)

(I3) aα is in {(write, varα), (read, varα)} and aβ is in {(write, varβ), (read, varβ)} and

varα 6= varβ

Checking preemption-safety. Under abstraction, we model each thread as a nondeterministic

finite automaton (NFA) over a finite alphabet consisting of abstract observable symbols. This

enables us to construct NFAs NPabs and P′abs accepting the languages [[Cabs]]NP and [[C ′abs]]P ,

respectively. Cabs is the abstract program corresponding to the input program C and C ′abs is the

program corresponding to the result of the synthesis C ′. It turns out that preemption-safety of C ′

w.r.t. C is implied by preemption-safety of C ′abs w.r.t. Cabs, which, in turn, is implied by language

inclusion modulo ID of NFAs P′abs and NPabs. NFAs P′abs and NPabs satisfy language inclusion

modulo ID if any word accepted by P′abs is equivalent to some word obtainable by repeatedly

commuting adjacent independent symbol pairs in a word accepted by NPabs.

Proposition 6.4.3. Given concurrent programs C and C ′, [[C ′abs]]P babs [[Cabs]]NP iff L(P′abs) ⊆

CloID(L(NPabs)).

Proof. By construction P′abs, resp. NPabs, accept exactly the the observation sequences that C ′abs,

resp. Cabs, may produce under the preemptive, resp. non-preemptive, semantics (denoted by

[[C ′abs]]P , resp. [[Cabs]]NP ). It remains to show that two observation sequences ω1 = α0 . . . αk and

ω2 = β0 . . . βk are equivalent iff ω1 ∈ CloID({ω2}).

We first show that ω1 ∈ CloID({ω2}) implies ω1 is equivalent to ω2. The proof proceeds by

induction: The base case is that no symbols are swapped and is trivially true. The inductive case

assumes that ω′ is equivalent to ω2 and we needs to show that after one single swap operation in
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ω′, resulting in ω′′, ω′ is equivalent to ω′′ and therefore by transitivity also equivalent to ω2. Rule

(A1) holds because ID does not allow symbols of the same thread to be swapped (I0). To prove

(A2) we use the fact that writes to the same variable cannot be swapped (I2), (I3). To prove (A3)

we use the fact that reads and writes to the same variable are not independent (I2), (I3).

It remains to show that ω1 is equivalent to ω2 implies ω1 ∈ CloID({ω2}). Clearly ω1 and ω2

consist of the same multiset of symbols (A1). Therefore it is possible to transform ω2 into ω1

by swapping adjacent symbols. It remains to show that all swaps involve independent symbols.

By (A1) the order of events in each thread does not change, therefore condition (I0) is always

fulfilled. Branch tags can swap with every other symbol (I1) and accesses to different variables

can swap with each other (I3). For each variables ShVar (A2) ensures that writes are in the same

order and (A3) allows reads in between to be reordered. These swaps are allowed by (I2). No

other swaps can occur.

6.4.2 Checking Language Inclusion

We first focus on the problem of language inclusion modulo an independence relation (Defini-

tion 6.4.2). This question corresponds to preemption-safety (Theorem 6.4.1, Proposition 6.4.3)

and its solution drives our synchronisation synthesis.

Theorem 6.4.4. For NFAs A,B over alphabet Σ and a symmetric, irreflexive independence

relation I ⊆ Σ× Σ, the problem L(A) ⊆ CloI(L(B)) is undecidable [Bertoni et al., 1982].

We now show that this general undecidability result extends to our specific NFAs and

independence relation ID.

Theorem 6.4.5. For NFAs P′abs and NPabs constructed from Cabs, the problem L(P′abs) ⊆

CloID(L(NPabs)) is undecidable.

Proof. Our proof is by reduction from the language inclusion modulo an independence relation

problem (Definition 6.4.2). Theorem 6.4.5 follows from the undecidability of this problem

(Theorem 6.4.4).

Assume we are given NFAs A = (QA,Σ,∆A, Qι,A, FA) and B = (QB,Σ,∆B, Qι,B, FB)

and an independence relation I ⊆ Σ× Σ. Without loss of generality we assume A and B to be

deterministic, complete, and free of ε-transitions, meaning from every state there is exactly one
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Figure 6.10 Simulator algorithm
Thread T1

`1: while (*) do
`2: signal(ch-sym) . choose symbol
`3: wait_reset(ch-sym-compl)
`4: sA1 ← ∆1

A(sA1, . . . , sAn, τ 1, . . . , τ p)
`5: . . .
`6: sAn ← ∆n

A(sA1, . . . , sAn, τ 1, . . . , τ p)
`7: sB1 ← ∆1

B(sB1, . . . , sBm, τ 1, . . . , τ p)
`8: . . .
`9: sBm ← ∆m

B (sB1, . . . , sBm, τ 1, . . . , τ p)
`10: end while
`11: final←

(
simA =⇒∨

q∈FA
(sA1 = q1 ∧ · · · ∧ sAn = qn)

)
∧
(
¬simA =⇒∨

q∈FB
(sB1 = q1 ∧ · · · ∧ sBm = qm)

)
`12: assume(final)

Thread T2

`12: simA← true

`13: simA← false

Thread Tα

`14: while (*) do
`15: wait_reset(ch-sym)
`16: τ 1 ← α1

`17: . . .
`18: τ p ← αp

`o1: write(v{α,α1})
. . .

`ok: write(v{α,αk})
`19: signal(ch-sym-compl)
`19: end while

transition for each symbol. We show that we can construct a program Cabs that is preemption-safe

iff L(A) ⊆ CloI(L(B)).

For our reduction we construct a program Cabs that simulates A or B if run with a preemptive

scheduler and simulates onlyB if run with a non-preemptive scheduler. Note thatL(A)∪L(B) ⊆

CloI(L(B)) iff L(A) ⊆ CloI(L(B)). For every symbol α ∈ Σ our simulator produces a

sequence ωα of abstract observable symbols. We say two such sequences ωα and ωβ commute if

ωα ·ωβ ≈tID ωβ ·ωα, i.e, if ωβ ·ωα can be obtained from ωα ·ωβ by repeatedly swapping adjacent

symbol pairs in ID.

We will show that (a) Cabs simulates A or B if run with a preemptive scheduler and simulates

only B if run with a non-preemptive scheduler, and (b) sequences ωα and ωβ commute iff

(α, β) ∈ I .

The simulator is shown in Figure 6.10. States and symbols of A and B are mapped to

natural numbers and represented as bitvectors to enable simulation using the languageWabs.

In particular we use Boolean guard variables from Wabs to represent the bitvectors. We use

true to represent 1 and false to represent 0. As the state space and the alphabet are finite we

know the number of bits needed a priori. We use n, m, and p for the number of bits needed to

represent QA, QB, and Σ, respectively. The transition functions ∆A and ∆B likewise work on

the individual bits. We represent bitvector x of length n as x1 . . . xn.

Thread T1 simulates both automata A and B simultaneously. We assume the initial states
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of A and B are mapped to the number 0. In each iteration of the loop in thread T1 a symbol

α ∈ Σ is chosen non-deterministically and applied to both automata (we discuss this step in the

next paragraph). Whether thread T1 simulates A or B is decided only in the end: depending

on the value of simA we assert that a final state of A or B was reached. The value of simA is

assigned in thread T2 and can only be true if T2 is preempted between locations `12 and `13.

With the non-preemptive scheduler the variable simA will always be false because thread T2

cannot be preempted. The simulator can only reach the 〈terminated〉 state if all assumptions

hold as otherwise it would end in the 〈invalid〉 state. The guard final will only be assigned

true in `11 if either simA is false and a final state of B has been reached or if simA is true

and a final state of A has been reached. Therefore the valid non-preemptive executions can only

simulate B. In the preemptive setting the simulator can simulate either A or B because simA

can be either true or false. Note that the statement in location `11 executes atomically and the

value of simA cannot change during its evaluation. This means that P′abs simulates L(A) ∪ L(B)

and NPabs simulates L(B).

We use τ to store the symbol used by the transition function. The choice of the next symbol

needs to be non-deterministic to enable simulation of A,B and there is no havoc statement in

Wabs. We therefore use the fact that the next thread to execute is chosen non-deterministically

at a preemption point. We define a thread Tα for every α ∈ Σ that assigns to τ the number

α maps to. Threads Tα can only run if the conditional variable ch-sym is set to 1 by the

notify statement in `2. The wait_reset(ch-sym-compl) in `3 is a preemption point for the non-

preemptive semantics. Then, exactly one thread Tα can proceed because the wait_reset(ch-sym)

statement in `15 atomically resets ch-sym to 0. After setting τ and outputting the representation

of α thread Tα, notifies thread T1 using condition variable ch-sym-compl. Another symbol

can only be produced in the next loop iteration of T1.

To produce an observable sequence faithful to I for each symbol in Σ we define a homo-

morphism h that maps symbols from Σ to sequences of observables. Assuming the symbol

α ∈ Σ is chosen, we produce the following observables:

• Loop tag. To output α the thread Tα has to perform one loop iteration. This implicitly

produces a loop tag (Tα, loop, `14).

• Conflict variables. For each pair of (α, αi) /∈ I , we define a conflict variable v{α,αi}. Note

that v{α,αi} = v{αi,α} and two writes to v{α,αi} do not commute under ID. For each αi, we

produce a tag (Tα, (write, v{α,αi}, `oi)). Therefore if two variables α1 and α2 are dependent
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the observation sequences produced for each of them will contain a write to v{α1,α2}.

Formally, the homomorphism h is given by h(α) = (Tα, loop, `14); (Tα, (write, v{α,α1}), `o1);

· · · ; (Tα, (write, v{α,αk}), `ok). For a sequence σ = α1 . . . αn use define h(σ) = h(α1) . . . h(αn).

We show that (α1, α2) ∈ I iff h(α1) and h(α2) commute. The loop tags are independent iff

α1 6= α2. If α1 = α2 then (α1, α2) /∈ I and h(α1) and h(α2) do not commute due to the loop

tags. Assuming (α1, α2) ∈ I then h(α1) and h(α2) commute because they have no common

conflict variable they write to. On the other hand, if (α1, α2) /∈ I , then both h(α1) and h(α2)

will contain (Tα{1,2} , (write, v{α1,α2}), `oi) and therefore cannot commute. We extend this result

to sequences and have that h(σ′) ≈tID h(σ) iff σ′ ≈tI σ.

This concludes our reduction. It remains to show that Cabs is preemption-safe iff L(A) ⊆

CloI(L(B)). By Proposition 6.4.3 it suffices to show that L(A) ⊆ CloI(L(B)) iff L(P′abs) ⊆

CloID(L(NPabs)).

1. We assume that L(A) ⊆ CloI(L(B)). Then, for every word σ ∈ L(A) we have that

σ ∈ CloI(L(B)). By construction h(σ) ∈ L(P′abs). It remains to show that h(σ) ∈

CloID(L(NPabs)). By σ ∈ CloI(L(B)) we know there exists a word σ′ ∈ L(B), such that

σ′ ≈tI σ. Therefore also h(σ′) ≈tID h(σ) and by construction h(σ′) ∈ L(NPabs).

2. We assume that L(A) 6⊆ CloI(L(B)). Then, there exists a word σ ∈ L(A) such that

σ /∈ CloI(L(B)). By construction h(σ) ∈ L(P′abs). Let us assume towards contradiction

that h(σ) ∈ CloID(L(NPabs)). Then there exists a word ω in L(NPabs) such that ω ≈tID
h(σ). By construction, this implies there exists some σ′ ∈ L(B) such that ω = h(σ′)

and h(σ′) ≈tID h(σ). Thus, there exists σ′ ∈ L(B) such that σ′ ≈tI σ. This implies

σ ∈ CloI(L(B)), which is a contradiction.

Fortunately, a bounded version of the language inclusion modulo I problem is decidable.

Recall the relation≈I over Σ∗ from Section 6.4.1. We define a symmetric binary relation≈iI over

Σ∗: (σ, σ′) ∈≈iI iff ∃(α, β) ∈ I: (σ, σ′) ∈≈I , σ[i] = σ′[i + 1] = α and σ[i + 1] = σ′[i] = β.

Thus ≈iI consists of all words that can be obtained from each other by commuting the symbols

at positions i and i+ 1. We next define a symmetric binary relation � over Σ∗: (σ, σ′) ∈� iff

∃σ1, . . . , σt: (σ, σ1) ∈≈i1I , . . . , (σt, σ′) ∈≈
it+1

I and i1 < . . . < it+1. The relation � intuitively

consists of words obtained from each other by making a single forward pass commuting multiple

pairs of adjacent symbols. We recursively define �k as follows: �0 is the identity relation
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id. For k > 0 we define �k=� ◦ �k−1, the composition of � with �k−1. Given a language

L over Σ, we use Clok,I(L) to denote the set {σ ∈ Σ∗ : ∃σ′ ∈ L with (σ, σ′) ∈�k}. In

other words, Clok,I(L) consists of all words which can be generated from L using a finite-state

transducer that remembers at most k symbols of its input words in its states. By definition we

have Clo0,I(L) = L.

Definition 6.4.6 (Bounded language inclusion modulo an independence relation). Given NFAsA,B

over Σ, I ⊆ Σ× Σ and a constant k > 0, the k-bounded language inclusion problem modulo I

is: L(A) ⊆ Clok,I(L(B))?

We present an algorithm to check k-bounded language inclusion modulo I , based on the

antichain algorithm for standard language inclusion [de Wulf et al., 2006].

6.4.3 Antichain algorithm for language inclusion

Given a partial order (X,v), an antichain over X is a set of elements of X that are incomparable

w.r.t. v. In order to check L(A) ⊆ L(B) for NFAs A = (QA,Σ,∆A, Qι,A, FA) and B =

(QB,Σ,∆B, Qι,B, FB), the antichain algorithm proceeds by exploring A and B in lockstep.

Without loss of generality we assume that A and B do not have ε-transitions. While A is

explored nondeterministically, B is determinised on the fly for exploration. The algorithm

maintains an antichain, consisting of tuples of the form (sA, SB), where sA ∈ QA and SB ⊆ QB .

The ordering relation v is given by (sA, SB) v (s′A, S
′
B) iff sA = s′A and SB ⊆ S ′B. The

algorithm also maintains a frontier set of tuples yet to be explored.

Given state sA ∈ QA and a symbol α ∈ Σ, let succα(sA) denote {s′A ∈ QA : (sA, α, s
′
A) ∈

∆A}. Given set of states SB ⊆ QB , let succα(SB) denote {s′B ∈ QB : ∃sB ∈ SB : (sB, α, s
′
B) ∈

∆B}. Given tuple (sA, SB) in the frontier set, let succα(sA, SB) denote {(s′A, S ′B) : s′A ∈

succα(sA), S ′B = succα(SB)}.

In each step, the antichain algorithm explores A and B by computing α-successors of all

tuples in its current frontier set for all possible symbols α ∈ Σ. Whenever a tuple (sA, SB) is

found with sA ∈ FA and SB ∩ FB = ∅, the algorithm reports a counterexample to language

inclusion. Otherwise, the algorithm updates its frontier set and antichain to include the newly

computed successors using the two rules enumerated below. Given a newly computed successor

tuple p′, if there does not exist a tuple p in the antichain with p v p′, then p′ is added to the
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frontier set or antichain (Rule R1). If p′ is added and there exist tuples p1, . . . , pn in the antichain

with p′ v p1, . . . , pn, then p1, . . . , pn are removed from the antichain (Rule R2). The algorithm

terminates by either reporting a counterexample, or by declaring success when the frontier

becomes empty.

6.4.4 Antichain algorithm for k-bounded language inclusion modulo I

This algorithm is essentially the same as the standard antichain algorithm, with the automaton B

above replaced by an automaton Bk,I accepting Clok,I(L(B)). The set QBk,I
of states of Bk,I

consists of triples (sB, η1, η2), where sB ∈ QB and η1, η2 are words over Σ of up to k length.

Intuitively, the words η1 and η2 store symbols that are expected to be matched later along a run.

The word η1 contains a list of symbols for transitions taken by Bk,I , but not yet matched in B,

whereas η2 contains a list of symbols for transitions taken in B, but not yet matched in Bk,I . We

use ∅ to denote the empty list. Since for every transition of Bk,I , the automaton B will perform

one transition, we have |η1| = |η2|. The set of initial states of Bk,I is {(sB, ∅, ∅) : sB ∈ Qι,B}.

The set of final states of Bk,I is {(sB, ∅, ∅) : sB ∈ FB}. The transition relation ∆Bk,I
is construc-

ted by repeatedly performing the following steps, in order, for each state (sB, η1, η2) and each

symbol α. In what follows, η[\i] denotes the word obtained from η by removing its ith symbol.

Given (sB, η1, η2) and α

• Step S1: Pick new s′B and β ∈ Σ such that (sB, β, s
′
B) ∈ ∆B

• Step S2:

(a) If ∀i: η1[i] 6= α and α is independent of all symbols in η1,

η′2 := η2 · α and η′1 := η1,

(b) else, if ∃i: η1[i] = α and α is independent of all symbols in η1 prior to i, η′1 := η1[\i]

and η′2 := η2

(c) else, go to S1

• Step S3:

(a) If ∀i: η′2[i] 6= β and β is independent of all symbols in η′2,

η′′1 :=η′1 · β and η′′2 := η′2,

(b) else, if ∃i: η′2[i] = β and β is independent of all symbols in η′2 prior to i, η′2 := η′2[\i]

and η′′1 := η′1
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Figure 6.11 Example for illustrating construction of Bk,I for k = 1 and I = {(α, β)}.

q0 start

q1

q2

B:
α

β

β

q0, ∅, ∅ start

q1, ∅, ∅ q2, β, α q2, ∅, ∅ q1, α, β

q2, β, α q2, ∅, ∅ q2, ∅, ∅ q2, α, β

B1,{(α,β)}:

α α β β

α β α β

(c) else, go to S1

• Step S4: Add ((sB, η1, η2), α, (s′B, η
′′
1 , η

′′
2)) to ∆Bk,I

and go to 1.

Example 6.4.7. In Figure 6.11, we have an NFA B with L(B) = {αβ, β}, I = {(α, β)} and

k = 1. The states of Bk,I are triples (q, η1, η2), where q ∈ QB and η1, η2 ∈ {α, β}∗. We

explain the derivation of a couple of transitions of Bk,I . The transition shown in bold from

(q0, ∅, ∅) on symbol β is obtained by applying the following steps once: S1. Pick q1 following

the transition (q0, α, q1) ∈ ∆B. S2(a). η′2 := β, η′1 := ∅. S3(a). η′′1 := α, η′′2 := β. S4. Add

((q0, ∅, ∅), β, (q1, α, β)) to ∆Bk,I
. The transition shown in bold from (q1, α, β) on symbol α is

obtained as follows: S1. Pick q2 following the transition (q1, β, q2) ∈ ∆B. S2(b). η′1 := ∅,

η′2 := β. S3(b). η′′2 := ∅, η′′1 := ∅. S4. Add ((q1, α, β), β, (q2, ∅, ∅)) to ∆Bk,I
. It can be seen that

Bk,I accepts the language {αβ, βα, β} = Clok,I(L(B)).

Proposition 6.4.8. Given k ≥ 0, the automaton Bk,I accepts at least Clok,I(L(B)).

Proof. The proof is by induction on k. The base case is trivially true, as L(B0,I) = L(B) =

Clo0,I(L(B)). The induction case assumes that Bk,I accepts at least Clok,I(L(B)) and we want

to show that Bk+1,I accepts at least Clok+1,I(L(B)). We take a word ω ∈ Clok+1,I(L(B)). It

must be derived from a word ω′ ∈ Clok,I(L(B)) by one additional forward pass of swapping.

Bk+1,I accepts ω: In step S1 we pick the same transitions in ∆B as to accept ω′. Steps S2 and

S3 will be identical as for ω′ with the exception of those adjacent symbol pairs that are newly

swapped in ω. For those pairs the symbols are first added to η2 and η1 by S2 and S3. In the next

step they are removed because the swapping only allows adjacent symbols to be swapped. This

also shows that the bound k + 1 suffices to accept ω.

In general NFA Bk,I can accept words not in Clok,I(L(B)). Intuitively this is because Bk,I

has two stacks and can also accept words where the swapping is done in a backward pass (instead
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of a forward pass required in our definition). For our purposes it is sound to accept more words

as long as they are obtained only by swapping independent symbols.

Proposition 6.4.9. Given k ≥ 0, the automaton Bk,I accepts at most CloI(L(B)).

Proof. We need to show that ω′ ∈ Bk,I =⇒ ω′ ∈ CloI(L(B)). For this we need to show that

ω′ is a permutation of a word ω ∈ L(B) by repeatedly swapping independent, adjacent symbols.

The word ω′ must be a permutation of ω because Bk,I only accepts if η1 and η2 are empty and

the stacks represent exactly the symbols not matched yet in NFA B. Further, we need to show

only independent symbols may be swapped. The stack η1 contains the symbols not yet matched

by B and η2 the symbols that were instead accepted by B, but not yet presented as input to Bk,I .

Before adding a new symbol to the stack we ensure it is independent with all symbols on the

other stack because once matched later it will have to come after all of these. When a symbols

is removed it is ensured that it is independent with all symbols on its own stack because it is

practically moved ahead of the other symbols on the stack.

6.4.5 Language inclusion check algorithm

We develop an algorithm to check language inclusion modulo I (Section 6.4.4) by iteratively

increasing the bound k. The algorithm is incremental: the check for k + 1-bounded language

inclusion modulo I only explores paths along which the bound k was exceeded in the previous

iteration.

The algorithm for k-bounded language inclusion modulo I is presented as function INCLU-

SION in Algorithm 6.1 (ignore Lines 25-29 for now) . The antichain set consists of tuples of

the form (sA, SBk,I
), where sA ∈ QA and SBk,I

⊆ QB × Σk × Σk. The frontier consists of

tuples of the form (sA, SBk,I
, cex), where cex ∈ Σ∗. The word cex is a sequence of symbols

of transitions explored in A to get to state sA. If the language inclusion check fails, cex is

returned as a counterexample to language inclusion modulo I . Each tuple in the frontier set

is first checked for equivalence w.r.t. acceptance (Line 20). If this check fails, the function

reports language inclusion failure and returns the counterexample cex (Line 20). If this check

succeeds, the successors are computed (Line 23). If a successor satisfies rule R1, it is ignored

(Line 24), otherwise it is added to the frontier (Line 31) and the antichain (Line 32). When

adding a successor to the frontier the symbol α it appended to the counterexample, denoted as
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Algorithm 6.1 Checking language inclusion modulo I
Require: Automata A = (QA,Σ,∆A, Qι,A, FA), B = (QB,Σ,∆B, Qι,B, FB) and independ-

ence relation I ⊆ Σ× Σ
Ensure: true iff L(A) ⊆ CloI(L(B))

1: frontier ← {(sA, {(Qι,B, ∅, ∅)}, ∅) : sA ∈ Qι,A}
2: No tuple in frontier is dirty
3: antichain ← frontier
4: overflow ← ∅
5: k ← 2
6: while true do
7: cex← INCLUSION(k)
8: if cex 6= true ∧ cex is spurious then
9: k ← k + 1

10: frontier ← {(sA, SBk,I
) ∈ frontier : SBk,I

not dirty} ∪ overflow
11: antichain ← {(sA, SBk,I

) ∈ antichain : SBk,I
not dirty} ∪ overflow

12: overflow ← ∅
13: else
14: return cex
15: end if
16: end while

17: function INCLUSION(k)
18: while frontier 6= ∅ do
19: remove a tuple (sA, SBk,I

, cex) from frontier
20: if sA ∈ FA ∧ (SBk,I

∩ FB) = ∅ then return cex
21: end if
22: for all α ∈ Σ do
23: (s′A, S

′
Bk,I

)← succα(sA, SBk,I
)

24: if @p ∈ antichain : p v (s′A, S
′
Bk,I

) then . Rule R1
25: if ∃(sB, η1, η2) ∈ S ′Bk,I

: |η1| > k ∨ |η2| > k then
26: if S ′Bk,I

not dirty then overflow ← overflow ∪ {(s′A, S ′Bk,I
)}

27: end if
28: S ′Bk,I

← {(sB, η1, η2) ∈ S ′Bk,I
: |η1| ≤ k ∧ |η2| ≤ k}

29: Mark S ′Bk,I
dirty

30: end if
31: frontier ← frontier ∪ {(s′A, S ′Bk,I

, cex · α)}
32: antichain ← (antichain\{p : (s′A, S

′
Bk,I

) v p}) ∪ {(s′A, S ′Bk,I
)} . Rule R2

33: end if
34: end for
35: end while
36: return true

37: end function
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cex · α. During the update of the antichain the algorithm ensures that its invariant is preserved

according to rule R2.

We need to ensure that our language inclusion honours the bound k by ignoring states that

exceed the bound. These states are stored for later to allow for a restart of the language inclusion

algorithm with a higher bound. Given a newly computed successor (s′A, S
′
Bk,I

) for an iteration

with bound k, if there exists some (sB, η1, η2) in S ′Bk,I
such that the length of η1 or η2 exceeds k

(Line 25), we remember the tuple (s′A, S
′
Bk,I

) in the set overflow (Line 27). We then prune S ′Bk,I

by removing all states (sB, η1, η2) where |η1| > k ∨ |η2| > k (line 28) and mark S ′Bk,I
as dirty

(line 28). If we find a counterexample to language inclusion we return it and test if it is spurious

(Line 8). In case it is spurious we increase the bound to k + 1, remove all dirty items from the

antichain and frontier (lines 10-11), and add the items from the overflow set (Line 12) to the

antichain set and frontier. Intuitively this will undo all exploration from the point(s) the bound

was exceeded and restarts from that/those point(s).

We call a counterexample cex from our language inclusion algorithm spurious if it is not a

counterexample to the unbounded language inclusion, formally cex ∈ CloI(L(B)). This test is

decidable because there is only a finite number of permutations of cex. This spuriousness arises

from the fact that the bounded language-inclusion algorithm is incomplete and every spurious

example can be eliminated by sufficently increasing the bound k. Note, however, that there exists

automata and independence relations for which there is a (different) spurious counterexample for

every k. In practice we test if a cex is spurious by building an automata A that accepts exactly

cex and running the language inclusion algorithm algorithm with k being the length of cex. This

is very fast because there is exactly one path through A.

Theorem 6.4.10 (bounded language inclusion check). The procedure INCLUSION of Algorithm 6.1

decides L(A) ⊆ L(Bk,I) for NFAs A, B, bound k, and independence relation I .

Proof. Our algorithm takes as arguments automata A and B. Conceptually, the algorithm

constructs Bk,I and uses the antichain algorithm [de Wulf et al., 2006] to decide the language

inclusion. For efficiency, we modify the original antichain language inclusion algorithm to

construct the automaton BI on the fly in the successor relation succ (line 23). The bound k is

enforced separately in line 25.

Theorem 6.4.11 (preemption-safety problem). If program C is not preemption-safe ([[C]]P 6b

[[C]]NP ), then Algorithm 6.1 will return false.
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Proof. By Theorem 6.4.1 we know [[Cabs]]P 6babs [[Cabs]]NP . From Proposition 6.4.3 we get

L(Pabs) * CloID(L(NPabs)). From Proposition 6.4.9 we know that for any k this is equivalent

to L(Pabs) * L(Bk,I), where B = NPabs. Theorem 6.4.10 shows that Algorithm 6.1 decides

this for any bound k.

6.5 Finding and Enforcing Mutex Constraints

If the language inclusion check fails it returns a counterexample trace. Using this counterexample

we derive a set of mutual exclusion (mutex) constraints that we enforce in P′abs to eliminate the

counterexample and then rerun the language inclusion check with the new P′abs.

6.5.1 Finding Mutex Constraints

The counterexample cex returned by the language inclusion check is a sequence of observables.

Since our observables record every branching decision it is easy to reconstruct from cex a trace

π: tid0.`0; . . . ; tidn.`n, where each `i is a location identifier from Cabs.

Recall the definition of good, bad neighbourhoods and HB-formulæ from Section 2.2. In our

setting good traces are those that are equivalent to a non-preemptive trace and all other feasible

traces are bad.

Non-preemptive neighbourhood. First, we define function Φ to extract a conjunction of

atomic ordering constraints from a trace π, such that all traces π′ in Φ(π) produce an observation

sequence equivalent to π. Then, we obtain a correctness constraint ϕ that represents all good

traces in nhood(cex). Remember, that the good traces are those that are observationally equival-

ent to a non-preemptive trace. The correctness constraint ϕ is a disjunction over the ordering

constraints from all traces in nhood(cex) that are feasible under non-preemptive semantics:

ϕG =
∨
π∈non−preemptive Φ(π).

Φ(π) enforces the order between conflicting accesses in the abstract trace π:

Φ(π) =
∧
{Ti.`j <Tk.`l : i 6= k ∧ Ti.`j precedes Tk.`l in π∧

Ti.`j, Tk.`l access same variable ∧ Ti.`j or Tk.`l is a write}
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Algorithm 6.2 Counterexample enumeration and generalisation algorithm
Require: Trace π, formula of good traces ϕG in nhood(π)
Ensure: HB-formula of bad traces ϕB

1: Ψ← quantifier-free first-order formula representing all feasible traces in nhood(π)
2: ΨB ← Ψ ∧ ¬ϕG
3: ϕB ← false

4: while ΨB ∧ ¬ϕB is satisfiable do
5: ψ ← satisfying assignment for ΨB ∧ ¬ϕB
6: σ ← trace represented by ψ
7: . Conflicting access analysis
8: ϕB′ ← Φ(σ)
9: . Unsat-core computation

10: ϕB′′ ← MinUNSATCore(Soft← ϕB′ ,
11: Hard← Ψ ∧ ϕG)
12: ϕB ← ϕB ∨ ϕB′′
13: end while
14: return ϕB

Example. Recall the counterexample trace from the running example in Section 6.1.1: cex =

T1.`1a; T1.`1b; T2.`1a; T2.`1b; T1.`2; T2.`2; T2.`3a; T2.`3b; T2.`4; T1.`3a; T1.`3b; T1.`4. There

are two feasible traces in N g
π :

• π1 = T1.`1a; T1.`1b; T1.`2; T1.`3a; T1.`3b; T1.`4; T2.`1a; T2.`1b; T2.`2; T2.`3a; T2.`3b;

T2.`4 and

• π2 = T2.`1a; T2.`1b; T2.`2; T2.`3a; T2.`3b; T2.`4; T1.`1a; T1.`1b; T1.`2; T1.`3a; T1.`3b;

T1.`4.

We represent

• π1 as Φ(π1) = ({T1.`1a, T1.`3a, T1.`3b} < T2.`3b) ∧ (T1.`3b < {T2.`1a, T2.`3a, T2.`3b}) ∧

(T1.`2 < T2.`2) and

• π2 as Φ(π2) = (T2.`3b < {T1.`1a, T1.`3a, T1.`3b}) ∧ ({T2.`1a, T2.`3a, T2.`3b} < T1.`3b) ∧

(T2.`2 < T1.`2).

The correctness specification is Θ = Φ(π1) ∨ Φ(π2).

Counterexample enumeration and generalisation. We next build a quantifier-free first-order

formula ΨB over the event identifiers in cex such that any model of ΨB corresponds to a bad,

feasible trace in nhood(cex). A trace is feasible if it respects the preexisting synchronisation,

which is not abstracted away. Bad traces are those that are feasible under the preemptive semantics

and not in ϕG. Further, we define a generalisation function G that works on conjunctions of
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atomic ordering constraints ϕ by iteratively removing a constraint as long as the intersection of

traces represented by G(ϕ) and ϕG is empty. This results in a local minimum of atomic ordering

constraints in G(ϕ), so that removing any remaining constraint would include a good trace in

G(ϕ). We iteratively enumerate models ψ of ΨB, building a constraint ϕB′ = Φ(ψ) for each

model ψ and generalising ϕB′ to represent a larger set of bad traces using G. This results in an

ordering constraint in disjunctive normal form ϕB =
∨
ψ∈ΨB

G(Φ(ψ)), such that the intersection

of ϕB and ϕG is empty and the union equals nhood(cex).

Algorithm 6.2 shows how the algorithm works. For each model ψ of ΨB a trace σ is

extracted in Line 6. From the trace the formula ϕB′ is extracted using Φ described above (Line 8).

Line 10 describes the generalisation function G, which is implemented using an unsat core

computation. We construct a formula ϕB′ ∧ Ψ ∧ ϕG, where Ψ ∧ ϕG is a hard constraint and

ϕ′B are soft constraints. A satisfying assignment to this formula models feasible traces that

are observationally equivalent to a non-preemptive trace. Since σ is a bad trace the formula

ϕB′ ∧Ψ ∧ ϕG must be unsatisfiable. The result of the unsat core computation is a formula ϕB′′

that is a conjunction of a minimal set of happens-before constraints required to ensure all trace

represented by ϕB′′ are bad.

Example. Our trace π from Section 6.1.1 is generalised toG(Φ(π)) = T2.`1a < T1.`3b∧T1.`3b <

T2.`3b. This constraint captures the interleavings where T2 interrupts T1 between locations `1a

and `3b. Any trace that fulfils this constraint is bad. All bad traces in Nπ are represented as

P = (T2.`1a < T1.`3b ∧ T1.`3b < T2.`3b) ∨ (T1.`1a < T2.`3b ∧ T2.`3b < T1.`3b).

Inferring mutex constraints. The constraint inference uses the same patterns as are used to

infer locks in Chapter 5. From each clause ρ in P described above, we infer mutex constraints to

eliminate all bad traces satisfying ρ. The key observation we exploit is that atomicity violations

show up in our formulæ as two simple patterns of ordering constraints between events.

1. The first pattern tid1.`1 < tid2.`2 ∧ tid2.`
′
2 < tid1.`

′
1 (visualised in Figure 6.12a)

indicates an atomicity violation (thread tid2 interrupts tid1 at a critical moment).

2. The second pattern is tid1.`1 < tid2.`
′
2 ∧ tid2.`2 < tid1.`

′
1 (visualised in Figure 6.12b).

This pattern is a generalisation of the first pattern in that either tid1 interrupts tid2 or the

other way round.

For both patterns the corresponding mutex constraint is mtx(tid1.[`1 : `′1], tid2.[`2 : `′2]).



123

Figure 6.12 Atomicity violation patterns

Thread tid1 Thread tid2

`1

`′1

`2

`′2

(a)

Thread tid1 Thread tid2

`1

`′1

`2

`′2

(b)

Example. The generalised counterexample constraint T2.`1a < T1.`3b ∧ T1.`3b < T2.`3b yields

the constraint mutex mtx(T2.[`1a : `3b],T1.[`3b : `3b]). In the next section we show how this

mutex constraint is enforced in P′abs.

6.5.2 Enforcing Mutex Constraints

To enforce mutex constraints in P′abs, we prune paths in P′abs that violate the mutex constraints.

Conflicts. Given a mutex constraint mtx(tid i.[`1 : `′1], tid j.[`2 : `′2]), a conflict is a tuple

(`pre
i , `

mid
i , `post

i , `cpre
j , `cpost

j ) of location identifiers satisfying the following:

(a) `pre
i , `mid

i , `post
i are adjacent locations in thread tid i,

(b) `cpre
j , `cpost

j are adjacent locations in the other thread tid j ,

(c) `1 ≤ `pre
i , `

mid
i , `post

i ≤ `′1 and

(d) `2 ≤ `cpre
j , `cpost

j ≤ `′2.

Intuitively, a conflict represents a minimal violation of a mutex constraint due to the execution of

the statement at location `cpre
j in thread j between the two statements at locations `pre

i and `mid
i in

thread i. Note that a statement at location ` in thread tid is executed when the current location of

tid changes from ` to succ(`).

Given a conflict c = (`pre
i , `

mid
i , `post

i , `cpre
j , `cpost

j ), let pre(c) = `pre
i , mid(c) = `mid

i , post(c) =

`post
i , cpre(c) = `cpre

j and cpost(c) = `cpost
j . Further, let tid1(c) = i and tid2(c) = j. To prune

all interleavings prohibited by the mutex constraints from P′abs we need to consider all conflicts

derived from all mutex constraints. We denote this set as C and let K = |C|.

Example. We have an example program and its flow-graph in Figure 6.13 (we skip the statement

labels in the nodes here). Suppose in some iteration we obtain mtx(T1.[`a1 : `a2],T2.[`b1 : `b4]).

This yields 2 conflicts: c1 given by (`b1, `b2, `b3, `a1, `a2) and c2 given by (`b2, `b3, `b4, `a1, `a2).
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Figure 6.13 Example: Mutex constraints and conflicts
Thread T1

`a1: write(v)
`a2: read(x)

Thread T2

`b1: read(v)
`b2: if (*) then
`b3: write(v)
`b4: read(x)

else
`b5: read(x)

end if

`a1

`a2

`b1

`b2

`b3 `b5

`b4

T1: T2:

On an aside, this example also illustrates the difficulty of lock placement in the actual code. The

mutex constraint would naïvely be translated to the lock lock(T1.[`1 : `2],T2.[`1 : `4]). This is

not a valid lock placement; in executions executing the else branch, the lock is never released.

Constructing new P′
abs. Initially, let NFA P′abs be given by the tuple (Qold,Σ∪{ε},∆old, Qι,old, Fold),

where

(a) Qold is the set of states 〈Vo, ctid, (`1, . . . , `n)〉 of the abstract program Cabs corresponding to

C, as well as 〈terminated〉 and 〈invalid〉,

(b) Σ is the set of abstract observable symbols,

(c) Qι,old is the initial state of Cabs,

(d) Fold = {〈terminated〉} and

(e) ∆old ⊆ Qold × Σ ∪ {ε} × Qold is the transition relation with (q, α, q′) ∈ ∆old iff q α−→ q′

according to the abstract preemptive semantics.

To enable pruning paths that violate mutex constraints, we augment the state space of P′abs to

track the status of conflicts c1, . . . , cK using four-valued propositions p1, . . . , pK , respectively.

Initially all propositions are 0. Proposition pk is incremented from 0 to 1 when conflict ck is

activated, i.e., when control moves from `pre
i to `mid

i along a path. Proposition pk is incremented

from 1 to 2 when conflict ck progresses, i.e., when thread tid i is at `mid
i and control moves from

`cpre
j to `cpost

j . Proposition pk is incremented from 2 to 3 when conflict ck completes, i.e., when

control moves from `mid
i to `post

i . In practice the value 3 is never reached because the state is

pruned when the conflict completes. Proposition pk is reset to 0 when conflict ck is aborted, i.e.,

when thread tid i is at `mid
i and either moves to a location different from `post

i , or moves to `post
i

before thread tid j moves from `cpre
j to `cpost

j .

Example. In Figure 6.13, conflict c1 is activated when T2 moves from `b1 to `b2; c1 progresses if
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now T1 moves from `a1 to `a2 and is aborted if instead T2 moves from `b2 to `b3; c1 completes

after progressing if T2 moves from `b2 to `b3 and is aborted if instead T2 moves from `b2 to `b5.

Formally, the new P′abs is given by the tuple (Qnew,Σ ∪ {ε},∆new, Qι,new, Fnew), where:

(a) Qnew = Qold × {0, 1, 2}K ,

(b) Σ is the set of abstract observable symbols as before,

(c) Qι,new = (Qι,old, (0, . . . , 0)),

(d) Fnew = {(Q, (p1, . . . , pK)) : Q ∈ Fold ∧ p1, . . . , pK ∈ {0, 1, 2}} and

(e) ∆new is constructed as follows:

add ((Q, (p1, . . . , pK)), α, (Q′, (p′1, . . . , p
′
K))) to ∆new iff

(Q,α,Q′) ∈ ∆old and for each k ∈ [1, K], the following hold:

1. Conflict activation: (the statement at location pre(ck) in thread tid1(ck) is executed)

if pk = 0, ctid = ctid′ = tid1(ck), `ctid = pre(ck) and `′ctid = mid(ck), then p′k = 1,

2. Conflict progress: (thread tid1(ck) is interrupted by tid2(ck) and the conflicting statement

at location cpre(ck) is executed)

else if pk = 1, ctid = ctid′ = tid2(ck), `ctid = cpre(ck) and `′ctid = cpost(ck), then

p′k = 2,

3. Conflict completion and state pruning: (the statement at location mid(ck) in thread

tid1(ck) is executed and that completes the conflict)

else if pk = 2, ctid = ctid′ = tid1(ck), `ctid = mid(ck) and `′ctid = post(ck), then delete

state (Q′, (p′1, . . . , p
′
K)),

4. Conflict abortion 1: (tid1(ck) executes alternate statement)

else if pk = 1 or 2, ctid = ctid′ = tid1(ck), `ctid = mid(ck) and `′ctid 6= post(ck), then

p′k = 0,

5. Conflict abortion 2: (tid1(ck) executes statement at location mid(ck) without interruption

by tid2(ck))

else if pk = 1, ctid = ctid′ = tid1(ck), `ctid = mid(ck) and `′ctid = post(ck), then p′k = 0

In our implementation, the new P′abs is constructed on-the-fly. Moreover, we do not maintain

the entire set of propositions p1, . . . , pK in each state of P′abs. A proposition pi is added to the

list of tracked propositions only after conflict ci is activated. Once conflict ci is aborted, pi is

dropped from the list of tracked propositions.

Theorem 6.5.1. We are given a program Cabs and a sequence of observable symbols ω that

is a counterexample to preemption-safety, formally ω ∈ L(P′abs) ∧ ω /∈ CloI(L(NPabs)). If a
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pattern P eliminating ω is found, then, after enforcing all resulting mutex constraints in P′abs,

the counterexample ω is no longer accepted by P′abs, formally ω /∈ L(P′abs).

Proof. The pattern P eliminating ω represents a mutex constraint mtx(tid i.[`1:`′′1], tid j.[`2:`′′2]),

such that the trace ω is no longer possible. Mutex constraints represent conflicts of the form

(`pre
i , `

mid
i , `post

i , `cpre
j , `cpost

j ). Each such conflict represents a context switch that is not allowed:

`pre
i → `mid

i → `cpre
j → `cpost

j → `mid
i → `post

i . Because P eliminates ω we know that ω has a

context switch from tid i.`
′
1 to tid j.`

′
2, where `1 ≤ `′1 ≤ `′′1 and `2 ≤ `′2 ≤ `′′2. One of the conflicts

representing the mutex constraint is (`pre
i , `

mid
i , `post

i , `cpre
j , `cpost

j ), where `mid
i = `′1 and `pre

i and

`post
i are the locations immediately before and after `′1. Further, `cpre

j = `′2 and `cpost
j the location

immediately following `′2. If now a context switch happens at location `′1 switching to location

`′2, this triggers the conflict and this trace will be discarded in P′abs.

6.6 Global Lock Placement Constraints

Our synthesis loop will keep collecting and enforcing conflicts P′abs until the language inclusion

check holds. At that point we have collected a set of conflicts Call that need to be enforced in

the original program source code. To avoid deadlocks, the lock placement has to conform to a

number of constraints.

We encode the global lock placement constraints for ensuring correctness as an SMT2

formula LkCons. Let L denote the set of all location and Lk denote the set of all locks

available for synthesis. We use scalars `, `′, `1, . . . of type L to denote locations and scal-

ars LkVar ,LkVar ′,LkVar 1, . . . of type Lk to denote locks. The number of locks is finite and

there is a fixed locking order. Let Pre(`) denote the set of all immediate predecessors in node

` : stmt(`) in the flow-graph of the thread tid(`) in C. We use the following Boolean variables

in the encoding.

2The encoding of the global lock placement constraints is essentially a SAT formula. We present and use this as
an SMT formula to enable combining the encoding with objective functions for optimisation (see Section 6.7).
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LockBefore(`,LkVar) lock(LkVar) is placed just before the state-

ment represented by `

LockAfter(`,LkVar) lock(LkVar) is placed just after the statement

represented by `

UnlockBefore(`,LkVar) unlock(LkVar) is placed just before the state-

ment represented by `

UnlockAfter(`,LkVar) unlock(LkVar) is placed just after the state-

ment represented by `

For every location ` in the source code we allow a lock to be placed either immediately

before or after it. If a lock LkVar is placed before `, than ` is protected by LkVar . If LkVar is

placed after `, than ` is not protected by LkVar , but the successor statements are. Both options

are needed, e.g. to lock before the first statement of a thread and to unlock after the last statement

of a thread. We define three additional Boolean variables:

(D1) InLock(`,LkVar): If location ` has no predecessor than it is protected by LkVar if there

is a lock statement before `.

InLock(`,LkVar) = LockBefore(`,LkVar)

If there exists a predecessor `′ to ` than ` is protected by LkVar if either there is a lock

statement before ` or if `′ is protected by LkVar and there is no unlock in between.

InLock(`,LkVar) = LockBefore(`,LkVar) ∨ (¬UnlockBefore(`,LkVar)∧

InLockEnd(`′,LkVar))

Note that either all predecessors are protected by a lock or none. We enforce this in Rule

(C7) below.

(D2) InLockEnd(`,LkVar): The successors of ` are protected by LkVar if either location ` is

protected by LkVar or lock(LkVar) is placed after `.

(InLock(`,LkVar) ∧ ¬UnlockAfter(`,LkVar)) ∨ LockAfter(`,LkVar)

(D3) Order(LkVar ,LkVar ′): We give a fixed lock order that is transitive, asymmetric, and

irreflexive.
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Order(LkVar ,LkVar ′) = true iff LkVar needs to be acquired before LkVar ′. This

means that an instruction lock(LkVar) cannot be place inside the scope of LkVar ′.

We describe the constraints and their SMT formulation constituting LkCons below. All

constraints are quantified over all `, `′, `1, . . . ∈ L and all LkVar ,LkVar ′,LkVar 1, . . . ∈ Lk.

(C1) All locations in the same conflict in Call are protected by the same lock.

∀C ∈ Call : `, `′ ∈ C⇒ ∃LkVar . InLock(`,LkVar) ∧ InLock(`′,LkVar)

(C2) Placing lock(LkVar) immediately before/after unlock(LkVar) is disallowed. Doing so

would make (C1) unsound, as two adjacent locations could be protected by the same lock

and there could still be a context-switch in between because of the immediate unlocking

and locking again. If ` has a predecessor `′ then

UnlockBefore(`,LkVar)⇒(¬LockAfter(`′,LkVar))

LockBefore(`,LkVar)⇒(¬UnlockAfter(`′,LkVar))

(C3) We enforce the lock order according to Order defined in (D3).

LockAfter(`,LkVar) ∧ InLock(`,LkVar ′)⇒ Order(LkVar ′,LkVar)

LockBefore(`,LkVar) ∧ (
∨

`′∈Pre(x)

InLockEnd(`′,LkVar ′))⇒ Order(LkVar ′,LkVar)

(C4) Existing locks may not be nested inside synthesised locks. They are implicitly ordered

before synthesised locks in our lock order.

(stmt(`) = lock(. . .))⇒ ¬InLock(`,LkVar)

(C5) No wait statements may be in the scope of synthesised locks to prevent deadlocks.

(stmt(`) = wait(. . .)/wait_not(. . .)/wait_reset(. . .))⇒ ¬InLock(`,LkVar)

(C6) Placing both lock(LkVar) and unlock(LkVar) before/after ` is disallowed.

(¬LockBefore(`,LkVar) ∨ ¬UnlockBefore(`,LkVar)) ∧

(¬LockAfter(`,LkVar) ∨ ¬UnlockAfter(`,LkVar))

(C7) All predecessors must agree on their InLockEnd status. This ensures that joining branches

hold the same set of locks. If ` has at least one predecessor then

(
∧

`′∈Pre(x)

InLockEnd(`′,LkVar)) ∨ (
∧

`′∈Pre(x)

¬InLockEnd(`′,LkVar))
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(C8) unlock(LkVar) can only be placed only after a lock(LkVar).

UnlockAfter(`,LkVar)⇒ InLock(`,LkVar)

If ` has a predecessor `′ then also

UnlockBefore(`,LkVar)⇒ InLockEnd(`′,LkVar)

else if ` has no predecessor then

UnlockBefore(`,LkVar) = false

(C9) We forbid double locking: A lock may not be acquired if that location is already protected

by the lock.

LockAfter(`,LkVar)⇒ ¬InLock(`,LkVar)

If ` has a predecessor `′ then also

LockBefore(`,LkVar)⇒ ¬InLockEnd(`,LkVar)

(C10) The end state lasti of thread i is unlocked. This prevents locks from leaking.

∀i : ¬InLock(lasti, lk)

According to constraints (C4) and (C5) no locks may be placed around existing wait or lock

statements. Since both statements are implicit preemption points, where the non-preemptive

semantics may context-switch, it is never necessary to synthesise a lock across an existing lock

or wait statement to ensure preemption-safety.

We have the following result.

Theorem 6.6.1. Let concurrent program C ′ be obtained by inserting any lock placement satisfy-

ing LkCons into concurrent program C. Then C ′ is guaranteed to be preemption-safe w.r.t. C and

not to introduce new deadlocks (that were not already present in C).

Proof. To show preemption-safety we need to show that language inclusion holds (Proposi-

tion 6.4.3). Language inclusion follows directly from constraint (C1), which ensures that all

mutex constraints are enforced as locks. Further, constraints (C2) and (C6) ensure that there

is never a releasing and immediate reacquiring of locks in between statements. This is crucial

because otherwise a context-switch in between two instructions protected by a lock would be

possible.

Let as assume towards contradiction that a new deadlocked state s = 〈V , ctid, (`1, . . . , `n)〉

is reachable in C ′. By definition this means that none of the rules of the preemptive semantics
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ofW (Figures 2.3 and 2.4) is applicable in s. Remember, that an infinite loop is considered a

lifelock. We proceed to enumerate all rules of the preemptive semantics that may block:

• All threads reached their last location, then the TERMINATE rule is the only one that

could be applicable. If it is not, then a lock is still locked. This deadlock is prevented by

condition (C10).

• The rule NSWITCH is not applicable because the other thread is blocked and SEQ is not

applicable because none of the rules of the single-thread semantics (Figure 2.2) apply.

The following sequential rules have preconditions that may prevent them from being

applicable.

– Rule LOCK may not proceed if the lock LkVar is taken. If LkVar = ctid we

have a case of double-locking that is prevented by constraint (C9). Otherwise

LkVar = j 6= ctid. In this case tid ctid is waiting for tid j . This may be because of

(a) a circular dependency of locks. This cannot be a new deadlock because of

constraints (C4) and (C3) enforcing a strict lock order even w.r.t. existing locks.

(b) another deadlock in tid j . This deadlock cannot be new because we can make a

recursive argument about the deadlock in tid j .

– Rule UNLOCK may not proceed if the lock is not owned by the executing thread.

In this case we either have a case of double-unlock (prevented by constraint (C8))

or a lock is unlocked that is not held by tid ctid at that point. The latter may happen

because the lock was not taken on all control flow paths leading to `ctid. This is

prevented by constraints (C7) and (C8).

– Rules WAIT/WAIT_NOT/WAIT_RESET may not proceed if the condition variable is

not in the right state. According to constraint (C5) `ctid cannot be protected by a syn-

thesised lock. This means the deadlock is either not new or it is caused by a deadlock

in a different thread making it impossible to reach signal(CondVar)/reset(CondVar).

In that case a recursive argument applies.

• The THREAD_END rule is not applicable because all other threads are blocked. This is

impossible by the same reasoning as above.
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6.7 Optimising Lock Placement

The global lock placement constraint LkCons constructed in Section 6.6 often has multiple models

corresponding to very different lock placements. The desirability of these lock placements varies

considerably due to performance considerations. For example a coarse-grained lock placement

may be useful when the cost of locking operations is relatively high compared to the cost of

executing the critical sections, while a fine-grained lock placement should be used when locking

operations are cheap compared to the cost of executing the critical sections. Neither of these

lock placement strategies is guaranteed to find the optimally performing program in all scenarios.

It is necessary for the programmer to judge when each criterion is to be used.

Here, we present objective functions f to distinguish between different lock placements. Our

synthesis algorithm combines the function f with the global lock placement constraints LkCons

into a single maximum satisfiability modulo theories (MaxSMT) problem and the optimal model

corresponds to the f -optimal lock placement. We present objective functions for coarse- and

fine-grained locking.

Objective functions. We say that a statement ` : stmt in a concurrent program C is protected

by a lock LkVar if InLock(`,LkVar) is true. We define the two objective functions as follows:

1. Coarsest-grained locking. This objective function prefers a program C1 over C2 if the

number of lock statements in C1 is fewer than in C2. Among the programs having the same

number of lock statements, the ones with the fewest statements protected by any lock are

preferred. Formally, we can define Coarse(Ci) to be λ+ ε · StmtInLock(Ci) where λ is the

count of lock statements in Ci, StmtInLock(Ci) is the count of statements in Ci that are

protected by any lock and ε is given by 1
2k

where k is the total number of statements in Ci.

The reasoning behind this formula is that the total cost is always dominated by the number

of lock statements. So if all statements are protected by a lock this fact contributes 1
2

to

the total cost.

2. Finest-grained locking. This objective function prefers a program C1 over C2 if C1 allows

more concurrency than C2. Concurrency of a program is measured by the number of

pairs of statements from different threads that cannot be executed together. Formally, we

define Fine(Ci) to be the total number of pairs of statements `1 : stmt1 and `2 : stmt2 from
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different threads that cannot be executed at the same time, i.e., are protected by the same

lock.

Optimisation procedure. The main idea behind the optimisation procedure for the above

objective functions is to build an instance of the MaxSMT problem using the global lock

placement constraint LkCons such that (a) every model of LkCons is a model for the MaxSMT

problem and the other way round; and (b) the cost of each model for the MaxSMT problem is

the cost of the corresponding locking scheme according to the chosen objective function. The

optimal lock placement is then computed by solving the MaxSMT problem.

A MaxSMT problem instance is given by 〈Φ, 〈(Ψ1, w1), . . .〉〉 where Φ and each Ψi are SMT

formulæ and each wi is a real number. The formula Φ is called the hard constraint, and each

Ψi is called a soft constraint with associated weight wi. Given an assignment V of variables

occurring in the constraints, its cost c is defined as the sum of the weights of soft constraints that

are falsified by V : c =
∑

i:V 6|=Ψi
wi. The objective of the MaxSMT problem is to find a model

that satisfies Φ with minimal cost. Intuitively, by minimising the cost we maximise the sum of

the weights of the satisfied soft constraints.

In the following, we write InLock(`) as a short-hand for
∨

LkVar InLock(`,LkVar), and

similarly LockBefore(`) and LockAfter(`). For each of our two objective functions, the hard

constraint for the MaxSMT problem is LkCons and the soft constraints and associated weights

are as specified below:

• For the coarsest-grained locking objective function, the soft constraints are of three types:

(a) ¬LockBefore(`) with weight 1, (b) ¬LockAfter(`) with weight 1, and (c) ¬InLock(`)

with weight ε, where ε is as defined above.

• For the finest-grained locking objective function, the soft constraints are given by
∧
lk ¬InLock(`, lk)∨

¬InLock(`′, lk), for each pair of statements ` and `′ from different threads. The weight of

each soft constraint is 1.

Theorem 6.7.1. For the coarsest-grained and finest-grained objective functions, the cost of

the optimal program is equal to the cost of the model for the corresponding MaxSMT problem

obtained as described above.
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6.8 Implementation and Experiments

In order to evaluate our synthesis algorithm, we implemented it in a tool called LISS, comprised

of 5400 lines of C++ code. LISS uses Clang/LLVM 3.6 to parse C code and insert locks into the

code. By using Clang’s rewriter, LISS is able to maintain the original formatting of the source

code. As a MaxSMT solver, we use Z3 version 4.4.1 (unstable branch). LISS is available as

open-source software along with benchmarks3. The language inclusion algorithm is available

separately as a library called LIMI4. LISS implements the synthesis method presented in this

chapter with several optimisations. For example, we take advantage of the fact that language

inclusion violations can often be detected by exploring only a small fraction of NPabs and P′abs,

which we construct on the fly.

Our prototype implementation has some limitations. First, LISS uses function inlining during

the analysis phase and therefore cannot handle recursive programs. During lock placement,

however, functions are taken into consideration and it is ensured that a function does not “leak”

locks. Second, we do not implement any form of alias analysis, which can lead to unsound

abstractions. For example, we abstract statements of the form “*x = 0” as writes to variable x,

while in reality other variables can be affected due to pointer aliasing. We sidestep this issue

by manually massaging input programs to eliminate aliasing. This is not a limitation of our

technique, which could be combined with known aliasing analysis techniques.

We evaluate our synthesis method w.r.t. the following criteria: (1) Effectiveness of synthesis

from implicit specifications; (2) Efficiency of the proposed synthesis algorithm; (3) Precision of

the proposed coarse abstraction scheme on real-world programs; (4) Quality of the locks placed.

6.8.1 Benchmarks

We ran LISS on a number of benchmarks, summarised in Table 6.1. For each benchmark we

report the complexity (lines of code (LOC), number of threads (Th)), the number of iterations

(It) of the language inclusion check (Figure 6.5) and the maximum bound k (MB) that was used

in any iteration of the language inclusion check. Further we report the total time (TT) taken by

the language inclusion check loop and the time for solving the MaxSMT problem for the two

3https://github.com/thorstent/Liss
4https://github.com/thorstent/Limi

https://github.com/thorstent/Liss
https://github.com/thorstent/Limi
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objective functions (Coarse, Fine). Finally, we report the maximum resident set size (Memory).

All measurements were done on an Intel core i5-3320M laptop with 8GB of RAM.

Implicit vs explicit specification. In order to evaluate the effectiveness of synthesis from

implicit specifications, we apply LISS to the set of benchmarks used in our previous CONREPAIR

tool for assertion-based synthesis (Chapter 4). In addition, we evaluate LISS and CONREPAIR

on several new assertion-based benchmarks (Table 6.1). We added yield statements to the source

code of the benchmarks to indicate where a context-switch in the driver would be expected by

the developer. This is a very light-weight annotation burden compared to the assertions required

by CONREPAIR.

The set includes synthetic microbenchmarks modelling typical concurrency bug patterns in

Linux drivers and the usb-serial macrobenchmark, which models a complete synchronisa-

tion skeleton of the USB-to-serial adapter driver. For LISS we preprocess these benchmarks

by eliminating assertions used as explicit specifications for synthesis. In addition, we replace

statements of the form assume(v) with await(v), redeclaring all variables v used in such

statements as condition variables. This is necessary as our program syntax does not include

assume statements.

We use LISS to synthesise a preemption-safe, deadlock-free version of each benchmark.

This method is based on the assumption that the benchmark is correct under non-preemptive

scheduling and bugs can only arise due to preemptive scheduling. We discovered two benchmarks

(lc-rc.c and myri10ge.c) that violated this assumption, i.e., they contained race conditions

that manifested under non-preemptive scheduling; LISS did not detect these race conditions.

LISS was able to detect and fix all other known races without relying on assertions. Furthermore,

LISS detected a new race in the usb-serial family of benchmarks, which was not detected by

CONREPAIR due to a missing assertion. We compared the output of LISS (using coarse-grained

locking as an objective function) with manually placed synchronisation (taken from real bug

fixes) and found that the two versions were similar in most of our examples.

Performance and precision. CONREPAIR uses CBMC for verification and counterexample

generation. Due to the coarse abstraction we use, both are much cheaper with LISS. For example,

verification of usb-serial.c, which was the most complex in our set of benchmarks, took

LISS 103 seconds, whereas it took CONREPAIR 20 minutes.

The loss of precision due to abstraction may cause the inclusion check to return a counter-
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Table 6.1 Experiments
Name LOC Th It MB TT Coarse Fine Memory CR

ConRepair benchmarks
ex1.c 18 2 1 1 <1s <1s <1s 29MB <1s
ex2.c 23 2 1 1 <1s <1s <1s 29MB <1s
ex3.c 37 2 1 1 <1s <1s <1s 29MB <1s
ex5.c 42 2 4 1 <1s <1s <1s 32MB <1s
lc-rc.cc 35 4 0 1 <1s N/A N/A 15MB 9s
dv1394.c 37 2 2 1 <1s <1s <1s 32MB 17s
em28xx.c 20 2 1 1 <1s <1s <1s 29MB <1s
f_acm.c 54 3 6 1 <1s <1s <1s 35MB 1872s
i915_irq.c 17 2 1 1 <1s <1s <1s 29MB 2.6s
ipath.c 23 2 1 3 <1s <1s <1s 29MB 12s
iwl3945.c 26 3 0 1 <1s <1s <1s 15MB 5s
md.c 35 2 1 1 <1s <1s <1s 30MB 1.5s
myri10ge.cc 60 4 0 3 <1s N/A N/A 16MB 1.5s
usb-serial.bug1.c 357 7 2 1 6.1s <1s <1s 267MB ∞b

usb-serial.bug2.c 355 7 2 1 4.5s <1s <1s 175MB 3563s
usb-serial.bug3.c 352 7 2 1 2.8s <1s <1s 105MB ∞b

usb-serial.bug4.c 351 7 2 1 3.8s <1s <1s 130MB ∞b

usb-serial.ca 357 7 0 3 31.9s N/A N/A 792MB 1200s
CPMAC driver benchmark

cpmac.bug1.c 1275 5 1 2 6s 1.6s 1.1s 156MB
cpmac.bug2.c 1275 5 4 10 152.9s 63s 41.4s 1210MB
cpmac.bug3.c 1270 5 9 4 11.1s 16.2s 9.6s 521MB
cpmac.bug4.c 1276 5 4 7 107.3s 10.5s 6.5s 5392MB
cpmac.bug5.c 1275 5 4 4 136.5s 11s 7.7s 3549MB
cpmac.ca 1276 5 0 1 2.1s N/A N/A 114MB

memcached benchmark
memcached.c 294 2 104 2 22.8s 6.2s 2.1s 114MB

Th=Threads, It=Iterations, MB=Max bound, TT=Time for language incl. loop,
CR=CONREPAIR time
a bug-free example
b timeout after three hours
c race not detected, as it was present under non-preemptive scheduling



136

Table 6.2 Lock placement statistics: the number of synthesised lock variables, lock and unlock
statements, and the number of abstract statements protected by locks for different objective
functions.

Name
No objective Coarse Fine

locks locks/
un-
locks

protected
instr

locks locks/
un-
locks

protected
instr

locks locks/
un-
locks

protected
instr

cpmac.bug1 2 6/6 11 1 3/3 11 1 3/3 9
cpmac.bug2 2 22/23 119 1 4/4 98 1 6/7 95
cpmac.bug3 1 4/4 29 1 2/3 29 1 5/6 28
cpmac.bug4 4 16/16 53 1 4/4 53 1 6/6 26
cpmac.bug5 3 15/15 30 1 4/4 30 1 5/5 30
memcached 2 5/5 26 1 1/1 28 1 2/2 24

example that is spurious in the concrete program, leading to unnecessary synchronisation being

synthesised. On our existing benchmarks, this only occurred once in the usb-serial driver,

where abstracting away the return value of a function led to an infeasible trace. We refined the

abstraction manually by introducing a guard variable to model the return value.

Real-world benchmarks. While these results are encouraging, synthetic benchmarks are not

necessarily representative of real-world performance.

CPMAC benchmark. We therefore implemented another set of benchmarks based on a complete

Linux driver for the TI AR7 CPMAC Ethernet controller. The benchmark was constructed

as follows. We manually preprocessed driver source code to eliminate pointer aliasing. We

combined the driver with a model of the OS API and the software interface of the device written

in C. We modelled most OS API functions as writes to a special memory location. Groups of

unrelated functions were modelled using separate locations. Slightly more complex models

were required for API functions that affect thread synchronisation. For example, the free_irq

function, which disables the driver’s interrupt handler, blocks, waiting for any outstanding

interrupts to finish. Drivers can rely on this behaviour to avoid races. We introduced a condition

variable to model this synchronisation. Similarly, most device accesses were modelled as writes

to a special ioval variable. Thus, the only part of the device that required a more accurate

model was its interrupt enabling logic, which affects the behaviour of the driver’s interrupt

handler thread.

Our original model consisted of eight threads. LISS ran out of memory on this model, so we

simplified it to five threads by eliminating parts of driver functionality. Nevertheless, we believe
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that the resulting model represents the most complex synchronisation synthesis case study, based

on real-world code, reported in the literature.

The CPMAC driver used in this case study did not contain any known concurrency bugs,

so we artificially simulated five typical race conditions that commonly occur in drivers of this

type (see Section 3.5.1). LISS was able to detect and automatically fix each of these defects

(bottom part of Table 6.1). The coarse abstraction may lead to unnecessary synchronisation,

which may be solved by abstraction refinement using guard variables. We only encountered two

program locations where manual abstraction refinement was necessary. This process could be

automated; automatic abstraction refinement is a known technique [Vechev et al., 2010a] we

could implement in LISS.

Memcached benchmark. Finally, we evaluate LISS on memcached, an in-memory key-value

store version 1.4.5 [memcached]. The core of memcached is a non-reentrant library of store

manipulation primitives. This library is wrapped into the thread.c module that implements

a thread-safe API used by server threads. Each API function performs a sequence of library

calls protected with locks. In this case study, we synthesise lock placement for a fragment of the

thread.c module. In contrast to our other case studies, here we would like to synthesise lock-

ing from scratch rather than fix defects in existing lock placement. Furthermore, optimal locking

strategy in this benchmark depends on the specific load. We envision that the programmer may

synthesise both a coarse-grained and a fine-grained version and at deployment the appropriate

version is selected.

Quality of synthesis. Next, we focus on the quality of synthesised solutions for the two real-

world benchmarks from our benchmark set. Table 6.2 compares the implementation synthesised

for these benchmarks using each objective functions in terms of (1) the number of locks used in

synthesised code, (2) the number of lock and unlock statements generated, and (3) total number

of program statements protected by synthesised locks.

We observe that different objective functions produce significantly different results in terms

of the size of synthesised critical sections and the number of lock and unlock operations guarding

them: the fine-grained objective synthesises smaller critical sections at the cost of introducing a

larger number of lock and unlock operations. Implementations synthesised without an objective

function are clearly of lower quality than the optimised versions: they contains large critical

sections, protected by unnecessarily many locks. These observations hold for the CPMAC
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benchmarks, where we start with a program that has most synchronisation already in place, as

well as the memcached benchmark, where we synthesise synchronisation from scratch.

To summarise our experiments, we found that (1) our coarse abstraction is highly precise

in practice; (2) manual effort involved in synchronisation synthesis can be further reduced via

automatic abstraction refinement; (3) additional work is required to improve the performance

of our method to be able to handle real-world systems without simplification; (4) the objective

functions allow specialising synthesis to a particular locking scheme; (5) the time required to

solve the MaxSMT problem is small compared to the analysis time.
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Chapter 7

Conclusion

In this thesis we introduced a number of synchronisation techniques for concurrent programs.

We started with a simple technique that can infer statement reorderings and atomic sections for

concurrent programs with assertions (Chapters 3 and 4). Next, we improved the synthesis by

considering additional synchronisation primitives: Instead of atomic sections, which are not

directly implementable, we now place locks, barriers and wait-signal statements. Finally, we

moved from an explicit specification to an implicit specification. The implicit specification

relieves the programmer of the burden of providing sufficient assertions to specify correctness of

the program. Our synthesis is guaranteed not to introduce deadlocks and the lock placement can

be optimised using a static objective function.

We developed a number of tools for this thesis. The most mature tool is LISS, which can

parse a significant framework of the C programming language and automatically insert missing

locks so that the program is correct w.r.t. our implicit specification. A number of key elements

are missing to enable LISS to process real-world programs: For example to process pointers

we would need an aliasing analysis. An abstraction refinement would be needed to increase

precision of the synthesis. Further, for real-world programs there could be performance issues

because the automata in the language inclusion step would grow too large.

An this point we have a number of research directions we can pursue. In ongoing work

[Černý et al., 2015a] we aim to optimise lock placement not merely using syntactic criteria,

but by optimising the actual performance of the program running on a specific system. In this

approach we start with a synthesised program that uses coarse locking and then profile the

performance on a real system. Using those measurements we adjust the locking to be more
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fine-grained in those areas where a high contention was measured.

Another direction are weak memory models. In this thesis we assumed a sequentially consist

memory model, which is an idealised model not found in computers today. To deal with weak

memory models we could adapt our techniques to synthesise fences.
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